• Title/Summary/Keyword: contact 3-manifold

Search Result 35, Processing Time 0.024 seconds

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

ON CONTACT THREE CR SUBMANIFOLDS OF A (4m + 3)-DIMENSIONAL UNIT SPHERE

  • Kwon, Jung-Hwan;Pak, Jin--Suk
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.561-577
    • /
    • 1998
  • We study (n+3)-dimensional contact three CR submanifolds of a Riemannian manifold with Sasakian three structure and investigate some characterizations of $S^{4r+3}$(a) $\times$ $S^{4s+3}$(b) ($a^2$$b^2$=1, 4(r + s) = n - 3) as a contact three CR sub manifold of a (4m+3)-dimensional unit sphere.

  • PDF

GOLDEN PARA-CONTACT METRIC MANIFOLDS

  • Beldjilali, Gherici;Bouzir, Habib
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1209-1219
    • /
    • 2022
  • The purpose of the present paper is to introduce a new class of almost para-contact metric manifolds namely, Golden para-contact metric manifolds. Then, we are particularly interested in a more special type called Golden para-Sasakian manifolds, where we will study their fundamental properties and we present many examples which justify their study.

LOXODROMES AND TRANSFORMATIONS IN PSEUDO-HERMITIAN GEOMETRY

  • Lee, Ji-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.817-827
    • /
    • 2021
  • In this paper, we prove that a diffeomorphism f on a normal almost contact 3-manifold M is a CRL-transformation if and only if M is an α-Sasakian manifold. Moreover, we show that a CR-loxodrome in an α-Sasakian 3-manifold is a pseudo-Hermitian magnetic curve with a strength $q={\tilde{r}}{\eta}({\gamma}^{\prime})=(r+{\alpha}-t){\eta}({\gamma}^{\prime})$ for constant 𝜂(𝛄'). A non-geodesic CR-loxodrome is a non-Legendre slant helix. Next, we prove that let M be an α-Sasakian 3-manifold such that (∇YS)X = 0 for vector fields Y to be orthogonal to ξ, then the Ricci tensor 𝜌 satisfies 𝜌 = 2α2g. Moreover, using the CRL-transformation $\tilde{\nabla}^t$ we fine the pseudo-Hermitian curvature $\tilde{R}$, the pseudo-Ricci tensor $\tilde{\rho}$ and the torsion tensor field $\tilde{T}^t(\tilde{S}X,Y)$.

YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Chidananda, Shruthi;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.213-228
    • /
    • 2022
  • In the present paper, we aim to study Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved, if the scalar curvature of an 𝜂-Einstein Lorentzian para-Sasakian manifold M is constant, then either 𝜏 = n(n-1) or, 𝜏 = n-1. Also we constructed an example to justify this. Next, it is proved that, if a three dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton for V is an infinitesimal contact transformation and tr 𝜑 is constant, then the soliton is expanding. Also we proved that, suppose a 3-dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton, if tr 𝜑 is constant and scalar curvature 𝜏 is harmonic (i.e., ∆𝜏 = 0), then the soliton constant λ is always greater than zero with either 𝜏 = 2, or 𝜏 = 6, or λ = 6. Finally, we proved that, if an 𝜂-Einstein Lorentzian para-Sasakian manifold M represents a Riemann soliton for the potential vector field V has constant divergence then either, M is of constant curvature 1 or, V is a strict infinitesimal contact transformation.

ON THE CONTACT CONFORMAL CURVATURE TENSOR$^*$

  • Jeong, Jang-Chun;Lee, Jae-Don;Oh, Ge-Hwan;Park, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.133-142
    • /
    • 1990
  • In this paper, we define a new tensor field on a Sasqakian manifold, which is constructed from the conformal curvature tensor field by using the Boothby-Wang's fibration ([3]), and study some properties of this new tensor field. In Section 2, we recall definitions and fundamental properties of Sasakian manifold and .phi.-holomorphic sectional curvature. In Section 3, we define contact conformal curvature tensor field on a Sasakian manifold and prove that it is invariant under D-homothetic deformation due to S. Tanno([13]). In Section 4, we study Sasakian manifolds with vanishing contact conformal curvature tensor field, and the last Section 5 is devoted to studying some properties of fibred Riemannian spaces with Sasakian structure of vanishing contact conformal curvature tensor field.

  • PDF

SASAKIAN 3-METRIC AS A *-CONFORMAL RICCI SOLITON REPRESENTS A BERGER SPHERE

  • Dey, Dibakar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.101-110
    • /
    • 2022
  • In this article, the notion of *-conformal Ricci soliton is defined as a self similar solution of the *-conformal Ricci flow. A Sasakian 3-metric satisfying the *-conformal Ricci soliton is completely classified under certain conditions on the soliton vector field. We establish a relation with Fano manifolds and proves a homothety between the Sasakian 3-metric and the Berger Sphere. Also, the potential vector field V is a harmonic infinitesimal automorphism of the contact metric structure.

CERTAIN CLASS OF QR-SUBMANIFOLDS OF MAXIMAL QR-DIMENSION IN QUATERNIONIC SPACE FORM

  • Kim, Hyang Sook;Pak, Jin Suk
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.147-161
    • /
    • 2013
  • In this paper we determine certain class of $n$-dimensional QR-submanifolds of maximal QR-dimension isometrically immersed in a quaternionic space form, that is, a quaternionic K$\ddot{a}$hler manifold of constant Q-sectional curvature under the conditions (3.1) concerning with the second fundamental form and the induced almost contact 3-structure.