• Title/Summary/Keyword: consumption ratio

Search Result 1,935, Processing Time 0.033 seconds

Association of milk and dairy product consumption with the incidence of cardio-cerebrovascular disease incidence in middle-aged and older Korean adults: a 16-year follow-up of the Korean Genome and Epidemiology Study

  • Yeseung Jeong;Kyung Won Lee;Hyekyeong Kim;Yuri Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.6
    • /
    • pp.1225-1237
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Unhealthy dietary behaviors constitute one of risk the factors for chronic and cardiovascular diseases, which are prevalent in middle-aged and older populations. Milk and dairy products are high-quality foods and important sources of calcium. Calcium protects against osteoporosis and cardiovascular disease. Therefore, this study investigated the association of milk and dairy product consumption with cardio-cerebrovascular disease incidence in middle-aged and older Korean adults. SUBJECTS/METHODS: Data were derived from the Ansan-Anseong cohort study, and a total of 8,009 individuals aged 40-69 years were selected and followed up biennially. Cox proportional hazard models were used to examine the association of milk and dairy product consumption with cardio-cerebrovascular disease incidence. RESULTS: During a mean follow-up period of 96.5 person-months, 552 new cases of cardio-cerebrovascular disease were documented. Milk consumers (< 1 serving/day) exhibited a 23% lower risk of cardio-cerebrovascular disease incidence than non-milk consumers (hazard ratio [HR], 0.77; 95% confidence interval [CI], 0.61-0.97; P for trend = 0.842). High yogurt consumption was associated with a 29% lower incidence risk (≥ 0.5 servings/day vs. none: HR, 0.71; 95% CI, 0.53-0.96; P for trend = 0.049), whereas high ice cream consumption was associated with a 70% higher risk of cardio-cerebrovascular disease incidence (≥ 0.5 servings/day vs. none: HR, 1.70; 95% CI, 1.01-2.88; P for trend = 0.070). CONCLUSIONS: This study indicates that less than one serving of milk and high yogurt consumption are associated with a lower cardio-cerebrovascular disease risk in the middle-aged and older populations.

Milling Characteristics of Vertical Small Scale Milling Machine for the Rough Rice -Optimum design conditions of main spindle speed, ceramic coating length of roller and feed screw pitch- (수직형 소형정미기의 벼 도정 특성 -주축회전수, 롤러의 세라믹코팅길이, 이송스크루 피치의 최적 설계조건에 대하여-)

  • 연광석;한충수;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.177-188
    • /
    • 2001
  • This research was carried out to examine the optimum design conditions of a vertical small-scale milling machine where the rough rice is processed directly into the white rice in one pass. Effects of the main spindle speed, feed screw pitch and ceramic coating length of the roller on various milling characteristics such as white rice processing capacity, electric energy consumption, rice temperature increase, broken rice ratio, moisture reduction, outlet force and crack ratio increase were studied. The results are as follows. 1. The maximum white rice processing capacity and the lowest crack ratio increase, were obtained from a machine with specification: main spindle speed of 970rpm having a feed screw pitch of 19㎜. 2. The minimum electric energy consumption was obtained with the main spindle speeds of 900 and 970rpm respectively having a feed screw pitch of 19㎜. 3. The rice temperature was increased as the feed screw pitch decreased and the main spindle speed increased. 4. Broken rice ratio was relatively low with the range of 0.8∼1.3%. 5. Moisture content loss was with the range of 0.05∼0.4%. 6. The highest outlet force was 0.72kg$\_$f/ with 900rpm of the main spindle speed and 19㎜ of the feed screw pitch and the lowest outlet force was 0.18∼0.34kg$\_$f/ with 970rpm of the main spindle speed and 16㎜ of the feed screw pitch. 7. The optimum design conditions for the vertical small-scale milling machine were obtained at 970rpm of the main spindle speed, 19㎜ of the feed screw pitch and 20㎜ of the ceramics coating length.

  • PDF

Association between Alcohol Drinking and Cardiovascular disease Mortality and All-cause Mortality - Kangwha Cohort Study - (음주와 순환기계질환 사망 및 전체사망과의 관련성)

  • Yi, Sang-Wook;Yoo, Sang-Hyun;Sull, Jae-Woong;Ohrr, Hee-Choul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.37 no.2
    • /
    • pp.120-126
    • /
    • 2004
  • Objectives : This study sought to examine relationships between alcohol drinking and cardiovascular disease mortality and all-cause mortality. Methods : From March 1985 through December 1999, 2,696 males and 3,595 females aged 55 or over as of 1985 were followed up for their mortality until 31 December 1999. We calculated the mortality risk ratios by level of alcohol consumption. Among the drinker, the level of alcohol consumption was calculated by the frequency of alcohol comsumption and the type of alcohol. Cox proportional hazard model was used to adjust for confounding factors. Results : Among males, compared to abstainer, heavy drinker had significantly higher mortality in all cause(Risk ratio=1.35), cardiovascular disease(Risk ratio=1.52) and cerebrovascular disease(Risk ratio =1.66). Although not significant, moderate drinker had lower ischemic heart disease mortality(Risk ratio =0.38). Among females, there was no statistically significant association between alcohol comsumption and mortality. Conclusion : The results of this study suggest that alcohol drinking has harmful effect on all-cause mortality, cardiovascular disease mortality and cerebrovascular disease mortality among males, especially in heavy drinker among males. Minimal evidence on protective effect for cardiovascular disease mortality in low or moderate drinker is observed.

Effect of Engine Operating Conditions on Combustion and Exhaust Emission Characteristics of a Gasoline Direct Injection(GDI) Engine Fueled with Bio-ethanol (직접분사식 가솔린엔진에서 운전조건에 따른 바이오에탄올의 연소 및 배기배출물 특성)

  • Yoon, Seung Hyun;Park, Su Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.609-615
    • /
    • 2015
  • In this study, the combustion and exhaust emission characteristics in a gasoline direct injection engine with variations of the bio-ethanol-gasoline blending ratio and the excess air factor were investigated. To investigate the effects of the excess air factor and the bio-ethanol blends with gasoline, combustion characteristics such as the in-cylinder combustion pressure, rate of heat release (ROHR), and the fuel consumption rate were analyzed. The reduction of exhaust emissions such as carbon monoxide (CO), unburned hydrocarbon (HC), and nitrogen oxides ($NO_x$) were compared with those of gasoline fuel with various excess air factors. The results showed that the peak combustion pressure and ROHR of bio-ethanol blends were slightly higher and were increased as bio-ethanol blending ratio is increased. Brake specific fuel consumption increased for a higher bio-ethanol blending ratio. The exhaust emissions decreased as the bio-ethanol blending ratio increased under all experimental conditions. The exhaust emissions of bio-ethanol fuels were lower than those of gasoline.

Milling characteristics of cutting-type rice milling machine according to the rotating speed of the main shaft

  • Cho, Byeong-Hyo;Han, Chung-Su;Kang, Tae-Hwan;Lee, Dong-Il;Won, Jin-Ho;Lee, Hee-Sook
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.416-423
    • /
    • 2017
  • This study aimed to identify milling characteristics depending on the rotating speed of the main shaft of the cutting-type rice milling machine which can minimize the conventional milling process. Brown rice, which was produced in Gunsan-si, Jeollabuk-do, Republic of Korea, in 2016, was used as the experimental material. The milling characteristics of white rice were measured under four different rotating speeds of main shaft: 950 - 1,050 rpm, 1,000 - 1,100 rpm, 1,050 - 1,150 rpm, and 1,100 - 1,160 rpm. For each shaft speed, 300 kg of brown rice was processed, and the milling characteristics were measured according to the whiteness, grain temperature, cracked rice ratio, broken rice ratio, turbidity, and energy consumption. The whiteness of rice grain was found to be consistent at around $40{\pm}0.5$ only when milled at the shaft speed of 950 - 1,050 or 1,000 - 1,100 rpm. The grain temperature during the milling process increased by 11.35 to $11.85^{\circ}C$, showing little differences amongst shaft speeds. The cracked rice ratio increased by 8.2 to 10.4% at all conditions. The broken rice ratio ranged from 0.58 to 0.76%, reflecting a low level. The turbidity after milling was 54.8 ppm when milled at 1,000 - 1,100 rpm. Energy consumption of 12.98 and 12.18 kWh/ton were recorded at the shaft speed of 1,000 - 1,100 and 1,050 - 1,150 rpm, respectively. The result of this study indicates that the optimal rotating speed of main shaft would be 1,000 - 1,100 rpm for a cutting-type rice milling machine.

Two-Dimensional Model Simulation of Balls Motion in a Tumbler-Ball Milling of Metal Powder in Relation with Its Ball Filling Ratio (금속분말의 회전 볼밀링에 있어서 볼 충진율에 따른 볼 거동의 2차원 모델 시뮬레이션)

  • 이길근;김성규;김우열
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.189-196
    • /
    • 2000
  • Effect of ball filling ratio on the behavior of balls motion and their collision characteristic in a tumbler-ball milling of metal powder are investigated by a computer simulation. The discrete element method and the extended Kelvin model composed of nonlinear spring and nonlinear dashpot were employed in the simulation. It can be possible that analysis of the individual balls motion in a three-dimensional actual mill by the two-dimensional model simulation, since the simulated trajectories of ball paths are in relatively good agreement with the actual ones. It knows that the balls motion in the tumbler-ball mill is strongly influenced by the surface conditions of the balls and mill container wall. The energy consumption of the individual balls during impact and the impact frequency of the individual balls increased with an increase in the ball filling ratio and showed maximum values at about 50-60% ball filling ratio, and then decreased.

  • PDF

2D Transconductance to Drain Current Ratio Modeling of Dual Material Surrounding Gate Nanoscale SOl MOSFETs

  • Balamurugan, N.B.;Sankaranarayanan, K.;John, M.Fathima
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.110-116
    • /
    • 2009
  • The prominent advantages of Dual Material Surrounding Gate (DMSG) MOSFETs are higher speed, higher current drive, lower power consumption, enhanced short channel immunity and increased packing density, thus promising new opportunities for scaling and advanced design. In this Paper, we present Transconductance-to-drain current ratio and electric field distribution model for dual material surrounding gate (DMSGTs) MOSFETs. Transconductance-to-drain current ratio is a better criterion to access the performance of a device than the transconductance. This proposed model offers the basic designing guidance for dual material surrounding gate MOSFETs.

Characteristics of the SFCL by turn-ratio of three-phase transformer

  • Jeong, I.S.;Choi, H.S.;Jung, B.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.34-38
    • /
    • 2013
  • According to the increase of electric consumption nowadays, power system becomes complicated. Due to this, the size of single line-to-ground fault from power system also increases to have many problems. In order to resolve these problems effectively, an Superconducting Fault Current Limiter(SFCL) was proposed and continuous study has been done. In this paper, an SFCL was combined to the neutral line of a transformer. An superconductivity has the characteristics of zero resistance below critical temperature. because of this, SFCL has nearly zero resistance. so we connecting SFCL to neutral line will not only have any loss in the normal operation but also have the less burden of electric power because of only limiting the initial fault current. We analyzed the characteristics of current, voltage according to the changes of turn ratio of 3 phase system in case of combinations of an SFCL to the neutral line. It was confirmed that the limiting rate of initial fault current by the increase of turn ratio was reduced.

Enhancement of the Bright Room Contrast Ratio in a Plasma Display Panel (플라스마 디스플레이 패널에서 명실 콘트라스트 개선)

  • Moon, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • A new electrode structure in a plasma display panel was designed in a way to increase the bright room contrast ratio (BRCR). The area of the black matrix pattern to get a low reflection from the panel surface was enlarged using the new electrode design concept. The electrical characteristics such as firing voltage, voltage margin and power consumption were measured. The luminance of the panel was measured and the luminous efficiency was calculated. It was found that the new electrode structure was very effective to enhance the BRCR.

Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine (PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF