• Title/Summary/Keyword: constant power

Search Result 2,851, Processing Time 0.032 seconds

Optimum Gain Distribution of the Ampilfiers in High Power YLF($Nd^{3+}$)-Phosphate Glass($Nd^{3+}$) Laser System

  • CHi, Kyeong-Koo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.20-25
    • /
    • 1989
  • The nonlinear, time dependent photon transport equations of Frantz and Nodvik, which describe the amplification of an optical pulse in an active medium, are modified to a simpler equation which describes only the amplification of energy. with this equation, the output energy of the high power YLF(Nd3+)-Phosphate Glass(Nd3+) Laser System is calculated. When the stored energy density Est is 0.10J/㎤, 0.16J/㎤, 0.228J/㎤, and 0.50J/㎤, and with the assumption of uniform population inversion density, the final output energy of this laser system is 5.38J, 176J, 317J, and 283J, respectively. The gain saturation causes distortion of the output beam. This phenomenon is described in detail at the first three rod amplifier systems in the case of E=0.228J/㎤. The peak current and decay time constant of the flashlamps, which are used to obtain population inversion in the active medium, are investigated. The flashlamp driving circuit which has optimum operational performance should have {{{{ SQRT { LC} }} time about 100$\mu$sec.

  • PDF

Internal Structure Optimization to enhance the Thermal Performance of an Air-cooled Lithium-ion Battery Pack (공냉식 리튬 이온 배터리 팩의 열 성능 향상을 위한 내부 구조 최적화)

  • Li, Quanyi;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.54-64
    • /
    • 2021
  • Electric vehicles use lithium-ion battery packs as the power supply, where the batteries are connected in series or parallel. The temperature control of each battery is essential to ensure a consistent overall temperature. This study focused on reducing ohmic heating caused by batteries to realize a uniform battery temperature. The battery spacing was optimized to improve air cooling, and the tilt angle between the batteries was varied to optimize the internal structure of the batterypack. Simulations were performed to evaluate the effects of these parameters, and the results showed that the optimal scheme effectively achieved a uniform battery temperature under a constant power discharge. These findings can contribute to future research on cooling methods for battery packs.

Diagnostic methods applied to Esfahan light water subcritical reactor (ELWSCR)

  • Arkani, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2133-2150
    • /
    • 2021
  • In this work, Esfahan light water subcritical reactor (ELWSCR) is analysed using experimental and theoretical diagnostic methods. Important neutronic parameters of the system such as prompt neutron lifetime, delayed neutron fraction, prompt neutron decay constant, negative reactivity of the core, fuel and moderator temperature coefficient of reactivity, and overall and local void coefficient of reactivity are estimated. Also, neutron flux distribution, reflector saving, water level effect, and lattice pitch of the core including operating point of the facility are studied in details. Theoretical results are calculated by MCNPX and measurements are performed utilizing zero power reactor noise method. Detailed descriptions of the results are explained in the text.

Stator Resistance Estimation of Permanent Magnet Synchronous Motor by using Kalman Filter (칼만 필터를 이용한 영구자석 동기 전동기의 고정자 저항값 검출 방법)

  • Hwang, Sangjin;Lee, Dongmyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.92-98
    • /
    • 2019
  • Accurate estimation of motor parameters is required in some motor control applications. For example, the value of stator resistance is required for stator flux-oriented control mostly used in doubly fed induction generator systems. Stator resistance is not a constant value and continuously changes due to the rise in temperature during motor operation. Estimation errors degrade the control performance. Hence, this study proposes a simple stator resistance estimation method. In this scheme, the differential components of voltage and current values are used to eliminate the dead-time effect, and Kalman filter algorithm is applied to reduce the error according to measurement noise. Simulation and experimental results obtained with a permanent magnet motor show the validity of the proposed algorithm.

Illumination Control in Visible Light Communication Using Transition Frequency Modulation (천이주파수 변조를 이용한 가시광통신의 조명제어)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2021
  • In this study, we utilized the duty factor of the transition frequency modulation (TFM) for the illumination control of the light emitting diode (LED) light in visible light communication (VLC). The average optical power is linearly proportional to the duty factor in TFM waveforms. We used the transition frequencies of Na=5 and Nb=1 for the high and the low bits, respectively, of the non-return-to-zero (NRZ) data in the VLC transmitter. A resistor and capacitor high-pass filter (HPF) was used in the VLC receiver to eliminate the 120 Hz optical noise from adjacent lighting lamps and the spikes at the HPF output were used to recover NRZ data from the TFM waveform. In experiments, the illumination of the LED light was controlled in the range of 25-90% of the constant-wave optical power by changing the duty factor of the TFM waveforms.

Automatic Gesture Recognition for Human-Machine Interaction: An Overview

  • Nataliia, Konkina
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.129-138
    • /
    • 2022
  • With the increasing reliance of computing systems in our everyday life, there is always a constant need to improve the ways users can interact with such systems in a more natural, effective, and convenient way. In the initial computing revolution, the interaction between the humans and machines have been limited. The machines were not necessarily meant to be intelligent. This begged for the need to develop systems that could automatically identify and interpret our actions. Automatic gesture recognition is one of the popular methods users can control systems with their gestures. This includes various kinds of tracking including the whole body, hands, head, face, etc. We also touch upon a different line of work including Brain-Computer Interface (BCI), Electromyography (EMG) as potential additions to the gesture recognition regime. In this work, we present an overview of several applications of automated gesture recognition systems and a brief look at the popular methods employed.

Design of High Performance Full-Swing BiCMOS Logic Circuit (고성능 풀 스윙 BiCMOS 논리회로의 설계)

  • Park, Jong-Ryul;Han, Seok-Bung
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.11
    • /
    • pp.1-10
    • /
    • 1993
  • This paper proposes a High Performance Full-Swing BiCMOS (HiF-BiCMOS) circuit which improves on the conventional BiCMOS circuit. The HiF-BiCMOS circuit has all the merits of the conventional BiCMOS circuit and can realize full-swing logic operation. Especially, the speed of full-swing logic operation is much faster than that of conventional full-swing BiCMOS circuit. And the number of transistors added in the HiF-BiCMOS for full-swing logic operation is constant regardless of the number of logic gate inputs. The HiF-BiCMOS circui has high stability to variation of environment factors such as temperature. Also, it has a preamorphized Si layer was changed into the perfect crystal Si after the RTA. Remarkable scalability for power supply voltage according to the development of VLSI technology. The power dissipation of HiF-BiCMOS is very small and hardly increases about a large fanout. Though the Spice simulation, the validity of the proposed circuit design is proved.

  • PDF

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

Dynamic of behavior for imperfect FGM plates resting on elastic foundation containing various distribution rates of porosity: Analysis and modeling

  • Kablia, Aicha;Benferhat, Rabia;Tahar, Hassaine Daouadji
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.389-409
    • /
    • 2022
  • During the manufacture of FGM plates, defects such as porosities can appear. Those can change the entire behavior of these plates. This paper aims to investigate the free vibration characteristics of porous functionally graded (FG) plates resting on elastic foundations. The Young's modulus of the plate is assumed to vary continuously through the thickness according to a power-law formulation, and the Poisson ratio is held constant. Different types of porosity distribution rates are considered. To examine the accuracy of the present formulation, several comparison studies are investigated. Effects of variation of porosity distribution rate, foundation parameter, power-law index and thickness ratio on the fundamental frequency of plates have been investigated.

Research on State of Charge and State of Energy variation through constant power discharge in high capacity lithium ion battery (고용량 리튬 이온 전지의 정전력 출력에 따른 충전 상태와 에너지 상태의 변화에 관한 연구)

  • Han, Seungyun;Kim, Jaewon;Song, Hyeoncheol;Lee, Seongjun;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.124-126
    • /
    • 2020
  • 다양한 기기에 적용된 리튬 이온 전지의 출력은 전력으로 계산되며, 리튬 이온 전지는 전류 기반의 해석뿐만 아니라 전력기반의 해석 또한 필수적이다. 본 논문은 리튬 이온 전지의 정전력 입력과 출력에 따른 전류 관점의 분석과 전력 관점의 분석을 수행하였다. 리튬 이온 전지에서 정전력 입력 및 출력 시, 충전 상태와 에너지 상태 변화의 차이를 및 용량과 에너지 변화를 분석하였다.

  • PDF