• 제목/요약/키워드: constant output

검색결과 1,064건 처리시간 0.022초

Study of Constant Current-Constant Voltage Output Wireless Charging System Based on Compound Topologies

  • Tan, Linlin;Pan, Shulei;Xu, Changfu;Yan, Changxin;Liu, Han;Huang, Xueliang
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.1109-1116
    • /
    • 2017
  • Wireless power transfer (WPT) technology has the advantages of intelligence and facilitation. This paper designs a WPT system applied to battery charging and provides a strategy which switches from the constant current (CC) charging mode to constant voltage (CV) charging mode. The LCL-LCL topology is used to realize the CC output, while the LCL-S (series compensation) topology is used to realize the CV output. The main factor affecting the output characteristics is extracted by analyzing the two topologies above. Based on the main factor, this paper puts forward a modified way to design the system. In addition, on-line monitors for the battery and switches are placed at receiving side, which avoids the need for introducing an information interaction module into the system. Therefore, the complexity of the controlling system is reduced. Finally, simulation and experimental analyses are carried out to verify the correctness of the compound topologies.

저항-커패시턴스 시정수 회로를 이용하여 지터 특성을 개선한 위상고정루프 (A Jitter Characteristic Improved PLL with RC Time Constant Circuit)

  • 안성진;최영식
    • 전자공학회논문지
    • /
    • 제54권2호
    • /
    • pp.133-138
    • /
    • 2017
  • 본 논문은 RC 시정수 회로를 이용하여 지터 특성을 개선한 위상고정루프의 구조를 제안하였다. RC 시정수 회로에서는 루프 필터 전압이 작은 시정수와 큰 시정수 값을 가지는 회로를 통과하여 비교기로 전달된다. 작은 시정수 값을 가지는 회로를 지나는 신호는 거의 루프 필터 출력 전압과 같은 값을 가진다. 큰 시정수 값을 가지는 회로를 지나는 신호는 루프 필터 출력전압의 평균값을 가지며, 비교기회로에서 기준 신호 역할을 한다. 비교기의 출력 신호는 루프 필터에 전류를 공급하는 보조 전하펌프를 제어한다. 루프 필터 출력 전압이 상승하면 보조 전하펌프는 루프 필터에서 전류를 방전시켜 루프 필터 출력 전압이 하강하게 하고, 또는 루프 필터 출력 전압이 하강하면 보조 전하펌프는 루프 필터에서 전류를 충전시켜 루프 필터 출력 전압이 상승하게 한다. 이런 부궤환 루프는 필터 출력 전압 변동 폭을 줄여서 지터 크기를 감소시켜준다.

COT 제어 플라이벅 컨버터를 위한 전압 리플 보상회로의 분석 및 설계 (Analysis and Design for Ripple Generation Network Circuit in Constant-on-Time-Controlled Fly-Buck Converter)

  • 조영훈;장바울
    • 전력전자학회논문지
    • /
    • 제27권2호
    • /
    • pp.106-117
    • /
    • 2022
  • Multiple output converters can be utilized when various output voltages are required in applications. Recently, one of the multiple output converters called fly-buck has been proposed, and has attracted attention due to the advantage that multiple output can be easily obtained with a simple structure. When constant on-time (COT) control is applied, the output ripple voltage must be treated carefully for control stability and voltage regulation characteristics in consideration of the inherent energy transfer characteristics of the fly-buck converter. This study analyzes the operation principle of the fly-buck converter with a ripple generation network and presents the design guideline for the improved output voltage regulation. Validity of the analysis and design guideline is verified using a 5 W prototype of the COT controlled fly-buck converter with a ripple generation network for telecommunication auxiliary power supply.

시동기의 정 출력 시동 기법에 의한 마이크로터빈 시동 구간의 운전 시뮬레이터 개발 (Simulator for a Micro-Turbine during Start-up by Constant Power Output Motoring Method using Starter)

  • 노민식
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.2028-2037
    • /
    • 2009
  • This paper presents the simulator for dynamic modeling of a MT(micro turbine) during start-up period. The simulator is implemented by modeling a dynamic power of main components of a MT including compressor, combustor and turbine. A modeling for a MT under steady state operation can be accurately built from thermodynamics analysis. But dynamic modeling during start-up period is very difficult because efficiency of main components is very low and the designed value has big error and nonlinear characteristics during start-up. In this paper, new method without using thermodynamics analysis during start-up is proposed for the simulator. The power models of main components are derived from analysis of the experimental operation data by test motoring using a electric starter under constant power output. The simulator is developed using MATLAB/Simulink. For constant power output control, sensorless vector inverter is designed and algorithms for starting from stall and method for controling a output power are proposed. The performance of developed simulator is verified by comparing experimental and simulation start-up results.

Constant Output Power Control Methods for Variable-Load Wireless Power Transfer Systems

  • Liu, Xu;Clare, Lindsay;Yuan, Xibo;Wang, Jun;Wang, Chonglin;Li, Jianhua
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.533-546
    • /
    • 2018
  • This study proposes a comprehensive mathematical model that includes coil-system circuit and loss models for power converters in wireless power transfer (WPT) systems. The proposed model helps in understanding the performance of WPT systems in terms of coil-to-coil efficiency, overall efficiency, and output power capacity and facilitates system performance optimization. Three methods to achieve constant output power for variable-load systems are presented based on system performance analysis. An optimal method can be selected for a specific WPT system by comparing the efficiencies of the three methods calculated with the proposed model. A two-coil 1 kW WPT system is built to verify the proposed mathematical model and constant output power control methods. Experimental results show that when the load resistance varies between 5 and $25{\Omega}$, the system output power can be maintained at 1 kW with a maximum error of 6.75% and an average error of 4%. Coil-to-coil and overall efficiencies can be maintained at above 90% and 85%, respectively, with the selected optimal control method.

출력 단 공통모드 전류 보상으로 일정한 이득을 갖는 Rail-to-Rail CMOS 연산증폭기 (A Rail-to-Rail CMOS Op-amp with Constant Gain by Using Output Common Mode Current Compensation)

  • 이동건;정항근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.457-458
    • /
    • 2008
  • This paper presents an output common mode current compensation method to achieve both constant Gm and constant gain. A conventional rail-to-rail CMOS op-amp with constant Gm was designed by using complementary differential input stage and current compensation skills. But it doesn't operate constant gain, because of output resistance variation. With $0.18{\mu}m$ CMOS process, the simulation results show that the differential gain variation can achieve less than 1.3dB. And a 60dB gain, a 13.5MHz unity gain-frequency, and 1mW power consumption, when operating at 1.8V and 10pF load.

  • PDF

정포락선 부호화된 CS-CDMA 송신기의 논리 게이트를 이용한 구현 (Logic gate implementation of constant amplitude coded CS/CDMA transmitter)

  • 김성필;류형직;김명진;오종갑
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 통신소사이어티 추계학술대회논문집
    • /
    • pp.281-284
    • /
    • 2003
  • Multi-code CDMA is an appropriate scheme for transmitting high rate data. However, dynamic range of the signal is large, and power amplifier with good linearity is required. Code select CDMA (CS/CDMA) is a variation of multi-code CDMA scheme that ensures constant amplitude transmission. In CS/CDMA input data selects multiple orthogonal codes, and sum of these selected codes are MPSK modulated to convert multi-level symbol into different carrier phases. CS/CDMA system employs level clipping to limit the number of levels at the output symbol to avoid hish density of signal constellation. In our previous work we showed that by encoding input data of CS/CDMA amplitude of the output symbol can be made constant. With this coding scheme, level clipping is not necessary and the output signal can be BPSK modulated for transmission. In this paper we show that the constant amplitude coded(CA-) CS/CDMA transmitter can be implemented using only logic gates, and the hardware complexity is very low. In the proposed transmitter architecture there is no apparent redundant encoder block which plays a major role in the constant amplitude coded CS/CDMA.

  • PDF

전하펌프를 이용한 루프 필터 전압변화 보상 위상고정루프 (Loop Filter Voltage Variation Compensated PLL with Charge Pump)

  • 안성진;최영식
    • 한국정보통신학회논문지
    • /
    • 제20권10호
    • /
    • pp.1935-1940
    • /
    • 2016
  • 본 논문에서는 RC 시정수 회로를 포함하는 비교기를 이용해 보조 전하펌프를 제어하여 루프 필터 출력 전압 변동 폭을 최소화 하는 위상고정루프(PLL)를 제안하였다. 루프 필터의 출력 전압변화는 작은 시정수 값을 가지는 RC와 큰 시정수 값을 가지는 RC를 통해 비교기의 입력으로 각각 전달된다. 작은 시정수를 가지는 RC는 루프 필터의 신호의 변화를 빠르게 전달하는 반면 큰 시정수를 가지는 RC는 루프 필터의 신호를 매우 느리게 전달하여 일정한 크기의 전압과 같이 동작한다. 비교기의 출력 신호는 보조 전하펌프를 제어하고, 이는 전압제어발진기(VCO)의 입력 전압 변동 폭을 줄여준다. 그러므로 제안한 위상고정루프는 위상 잡음이 많이 제거된 신호를 생성한다. 제안된 위상고정 루프는 1.8V의 공급전압에서 0.18um CMOS 공정의 파라미터를 이용하여 Hspice로 시뮬레이션을 수행하고, 동작을 검증하였다.

제어기 응답을 고려한 삼상 전압형 인버터의 출력 LC필터 설계 (Output LC Filter Design of Three Phase Voltage Source Inverter Considering the Performance of Controller)

  • 최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.748-751
    • /
    • 2000
  • in this paper the design procedure of three phase voltage source inverter output filter is described. The 'd' axis transfer function of the filter output voltage to the load current is described with the capacitor value and the system time constant including the controller. This means that the relation between the filter capacitor value and the system time constant is given as the closed form. By using the above closed form the capacitor value can be calculated with the system time constant is given as the closed,. form the capacitor value can be calculated with the system time constant which can be implemented practically not using the try and error method. And as the effect of the load is connected.

  • PDF

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.