DOI QR코드

DOI QR Code

Constant Output Power Control Methods for Variable-Load Wireless Power Transfer Systems

  • Liu, Xu (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Clare, Lindsay (Electrical Energy Management Research Group, University of Bristol) ;
  • Yuan, Xibo (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Wang, Jun (Electrical Energy Management Research Group, University of Bristol) ;
  • Wang, Chonglin (School of Electrical and Power Engineering, China University of Mining and Technology) ;
  • Li, Jianhua (School of Electrical and Power Engineering, China University of Mining and Technology)
  • Received : 2017.06.16
  • Accepted : 2017.12.12
  • Published : 2018.03.20

Abstract

This study proposes a comprehensive mathematical model that includes coil-system circuit and loss models for power converters in wireless power transfer (WPT) systems. The proposed model helps in understanding the performance of WPT systems in terms of coil-to-coil efficiency, overall efficiency, and output power capacity and facilitates system performance optimization. Three methods to achieve constant output power for variable-load systems are presented based on system performance analysis. An optimal method can be selected for a specific WPT system by comparing the efficiencies of the three methods calculated with the proposed model. A two-coil 1 kW WPT system is built to verify the proposed mathematical model and constant output power control methods. Experimental results show that when the load resistance varies between 5 and $25{\Omega}$, the system output power can be maintained at 1 kW with a maximum error of 6.75% and an average error of 4%. Coil-to-coil and overall efficiencies can be maintained at above 90% and 85%, respectively, with the selected optimal control method.

Keywords

E1PWAX_2018_v18n2_533_f0001.png 이미지

Fig. 1. Function blocks of the WPT systems in this work.

E1PWAX_2018_v18n2_533_f0002.png 이미지

Fig. 2. WPT system. (a) Entire system. (b) Simplified model.

E1PWAX_2018_v18n2_533_f0003.png 이미지

Fig. 3. Experimental platform of the WPT system.

E1PWAX_2018_v18n2_533_f0004.png 이미지

Fig. 4. 16-turn flat spiral coil.

E1PWAX_2018_v18n2_533_f0005.png 이미지

Fig. 5. Coupling coefficient with different coil-to-coil distances.

E1PWAX_2018_v18n2_533_f0006.png 이미지

Fig. 6. Effect of DC input voltage on system performance.

E1PWAX_2018_v18n2_533_f0007.png 이미지

Fig. 7. Effect of coupling coefficient on system performance.

E1PWAX_2018_v18n2_533_f0008.png 이미지

Fig. 8. Effect of load resistance on system performance.

E1PWAX_2018_v18n2_533_f0009.png 이미지

Fig. 9. Effect of driving frequency on system performance with afixed coil-to-coil distance and various load resistances.

E1PWAX_2018_v18n2_533_f0010.png 이미지

Fig. 10. Effect of driving frequency on system performance witha fixed load resistance and various coil-to-coil distances.

E1PWAX_2018_v18n2_533_f0011.png 이미지

Fig. 11. Experimental results for constant output power byadjusting the DC input voltage.

E1PWAX_2018_v18n2_533_f0012.png 이미지

Fig. 12. Experimental results for constant output power byadjusting the DC voltage and driving frequency.

E1PWAX_2018_v18n2_533_f0013.png 이미지

Fig. 13. Experimental results for constant output power byadjusting the coil separation and the coupling coefficient.

E1PWAX_2018_v18n2_533_f0014.png 이미지

Fig. 14. System efficiency comparison.

E1PWAX_2018_v18n2_533_f0015.png 이미지

Fig. 15. Effective method selection flowchart.

TABLE I LITZ WIRE PARAMETERS

E1PWAX_2018_v18n2_533_t0001.png 이미지

TABLE II COIL DESIGN PARAMETERS

E1PWAX_2018_v18n2_533_t0002.png 이미지

TABLE III COIL SYSTEM PARAMETERS

E1PWAX_2018_v18n2_533_t0003.png 이미지

TABLE IV WPT SYSTEM PARAMETERS

E1PWAX_2018_v18n2_533_t0004.png 이미지

TABLE V CALCULATED COUPLING COEFFICIENT AND CORRESPONDING COIL-TO-COIL DISTANCE DERIVED FROM MAXWELL

E1PWAX_2018_v18n2_533_t0005.png 이미지

TABLE VI MEASURED POWER IN THE EXPERIMENTS

E1PWAX_2018_v18n2_533_t0006.png 이미지

References

  1. N. Tesla, "Apparatus for transmitting electrical energy," U.S. Patent 1119732, Dec.1, 1914.
  2. A. K. RamRakhyani, S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Trans. Biomed. Circuits Syst., Vol. 5, No. 1, pp. 48-63, Feb. 2011. https://doi.org/10.1109/TBCAS.2010.2072782
  3. R. F. Xue, K. W. Cheng, and M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation," IEEE Trans. Circuits Syst. I Reg. Papers, Vol. 60, No. 4, pp. 867-874, Apr. 2013. https://doi.org/10.1109/TCSI.2012.2209297
  4. A. Zaheer, D. Kacprzak, and G. A. Covic, "A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications," 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, No. 1, pp. 283-290, 2012.
  5. U. K. Madawala and D. J. Thrimawithana, "A bidirectional inductive power interface for electric vehicles in V2G systems," IEEE Trans. Ind. Electron., Vol. 58, No. 10, pp. 4789-4796, Oct. 2011. https://doi.org/10.1109/TIE.2011.2114312
  6. J. Shin, S, Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.-J. Jeon, and D.-H. Cho, “Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1179-1192, Mar. 2014. https://doi.org/10.1109/TIE.2013.2258294
  7. J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, "Narrow-width inductive power transfer system for online electrical vehicles," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3666-3679, Dec. 2011. https://doi.org/10.1109/TPEL.2011.2160972
  8. H. Hoang, S. Lee, Y. Kim, Y. Choi, and F. Bien, "An adaptive technique to improve wireless power transfer for consumer electronics," IEEE Trans. Consum. Electron., Vol. 58, No. 2, pp. 327-332, May 2012. https://doi.org/10.1109/TCE.2012.6227430
  9. J. C. Lin, "Wireless power transfer for mobile applications, and health effects," IEEE Trans. Antennas Propag., Vol. 55, No. 2, pp. 250-253, Apr. 2013.
  10. Y. D. Lee and S. Y. Park, "Rapid charging strategy in the constant voltage mode for a high power Li-Ion battery," 2013 IEEE Energy Convers. Congr. Expo. ECCE 2013, pp. 4725-4731, 2013.
  11. T. N. Gucin, M. Biberoglu, and B. Fincan, "A constantcurrent constant-voltage charging based control and design approach for the parallel resonant converter," 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, Vol. 5, pp. 414-419, 2016.
  12. V. B. Vu, V. T. Doan, V. L. Pham, and W. Choi, "A new method to implement the constant current-constant voltage charge of the inductive power transfer system for electric vehicle applications," 2016 IEEE Transp. Electrif. Conf. Expo, Asia-Pacific, ITEC Asia-Pacific 2016, pp. 449-453, 2016.
  13. N. K. Poon, B. M. H. Pong, and C. K. Tse, "A constantpower battery charger with inherent soft switching and power factor correction," IEEE Trans. Power Electron., Vol. 18, No. 6, pp. 1262-1269, Nov. 2003.
  14. G. a. J. Elliott, G. a. Covic, D. Kacprzak, and J. T. Boys, "A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems," IEEE Trans. Mag., Vol. 42, No. 10, pp. 3389-3391, Oct. 2006. https://doi.org/10.1109/TMAG.2006.879619
  15. K. W. Klontz, D. M. Divan, D. W. Novotny, and R. D. Lorenz, "Contactless power delivery systems for mining applications." IEEE Trans. Ind. Appl., Vol. 31, No. 1, pp. 27-35, Jan./Feb. 1995. https://doi.org/10.1109/28.363053
  16. C. Auvigne, P. Germano, D. Ladas, and Y. Perriard, "A dual-topology ICPT applied to an electric vehicle battery charger," 2012 XXth Int. Conf. Electr. Mach., pp. 2287-2292, 2012.
  17. C.-S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Ind. Electron., Vol. 52, No. 5, pp. 1308-1314, Oct. 2005. https://doi.org/10.1109/TIE.2005.855672
  18. J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, "Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface," IEEE Trans. Ind. Appl., Vol. 35, No. 4, pp. 884-895, Jul/Aug. 1999.
  19. G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, "The design of a contact-less energy transfer system for a people mover system," PowerCon 2000 - 2000 Int. Conf. Power Syst. Technol. Proc., Vol. 1, pp. 79-84, 2000.
  20. R. Mecke and C. Rathge, "High frequency resonant inverter for contactless energy transmission over large air gap," PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., Vol. 3, pp. 1737-1743, 2004.
  21. X. Liu and S. Y. R. Hui, "Optimal design of a hybrid winding structure for planar contactless battery charging platform," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 455-463, Jan. 2008. https://doi.org/10.1109/TPEL.2007.911844
  22. R. Bosshard, J. Muhlethaler, J. W. Kolar, and I. Stevanovic, "The rj-a--Pareto front of inductive power transfer coils," IECON Proc. (Industrial Electron. Conf., pp. 4270-4277, 2012.
  23. S. Li, W. Li, J. Deng, T. D. Nguyen, and C. C. Mi, "A double-sided LCC compensation network and its tuning method for wireless power transfer," IEEE Trans. Veh. Technol., Vol. 64, No. 6, pp. 2261-2273, Jun. 2015. https://doi.org/10.1109/TVT.2014.2347006
  24. F. Liu, Y. Yang, D. Jiang, X. Ruan, and X. Chen, "Modeling and optimization of magnetically coupled resonant wireless power transfer system with varying spatial scales," IEEE Trans. Power Electron., Vol. 32, No. 4, pp. 3240-3250, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2581840
  25. O. Knecht, R. Bosshard, and J. Kolar, "High efficiency transcutaneous energy transfer for implantable mechanical heart support systems," IEEE Trans. Power Electron., Vol. 30, No. 11, pp. 6221-6236, Nov. 2015. https://doi.org/10.1109/TPEL.2015.2396194
  26. S. Hui, W. Zhong, and F. C. Lee, "A critical review of recent progress in mid-range wireless power transfer," IEEE Trans. Power Electron., Vol. 29, No. 9, pp. 4500-4511, Sep. 2013. https://doi.org/10.1109/TPEL.2013.2249670
  27. N. Inagaki, "Theory of image impedance matching for inductively coupled power transfer systems," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 4, pp. 901-908, Apr. 2014. https://doi.org/10.1109/TMTT.2014.2300033
  28. J. M. Miller, P. T. Jones, J. M. Li, and O. C. Onar, "ORNL experience and challenges facing dynamic wireless power charging of EV's," IEEE Circuits Syst. Mag., Vol. 15, No. 2, pp. 40-53, Secondquarter 2015. https://doi.org/10.1109/MCAS.2015.2419012
  29. J. M. Miller, C. P. White, O. C. Onar, and P. M. Ryan, "Grid side regulation of wireless power charging of plug-in electric vehicles," 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, pp. 261-268, 2012.
  30. Y. Wang, Y. Yao, X. Liu, D. G. Xu, and L. Cai, "An LC/S compensation topology and coil design technique for wireless power transfer," IEEE Trans. Power Electron., Vol. 33, No. 3, Mar. 2018.
  31. M. Pinuela, D. C. Yates, S. Lucyszyn, and P. D. Mitcheson, "Maximizing DC-to-load efficiency for inductive power transfer," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2437-2447, May. 2013. https://doi.org/10.1109/TPEL.2012.2215887
  32. Y. Wang, Y. Yao, X. Liu, and D. Xu, "S/CLC compensation topology analysis and circular coil design for wireless power transfer," IEEE Trans. Transport. Electrific., Vol. 3, No. 2, pp. 496-507, June 2017. https://doi.org/10.1109/TTE.2017.2651067
  33. D. Dinu and H. Gietler, "Area efficient charge pump design with constant output power over the whole supply range," Proc. Int. Semicond. Conf. CAS, Vol. 2, No. 6, pp. 441-444, 2007.
  34. S. C. Smithson and S. S. Williamson, "Constant power loads in More Electric Vehicles - An overview," IECON Proc. (Industrial Electron. Conf., pp. 2914-2922, 2012.
  35. O. C. Onar, J. M. Miller, S. L. Campbell, C. Coomer, C. P. White, and L. E. Seiber, "A novel wireless power transfer for in-motion EV/PHEV charging," Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 3073-3080, 2013.
  36. H. Wenshan, Y. Lingsong, L. Zhiwei, and Y. Hui, "Loss analysis and improvement of all parts of magnetic resonant wireless power transfer system," Proc. - 2015 Chinese Autom. Congr. CAC 2015, pp. 2251-2256, 2016.
  37. S. Dieckerhoff, S. Bernet, and D. Krug, "Power lossoriented evaluation of high voltage IGBTs and multilevel converters in transformerless traction applications," IEEE Trans. Power Electron., Vol. 20, No. 6, pp. 1328-1336, Nov. 2005. https://doi.org/10.1109/TPEL.2005.857534
  38. J. Sallan, J. L. Villa, a. Llombart, and J. F. Sanz, "Optimal design of ICPT systems applied to electric vehicle battery charge," IEEE Trans. Ind. Electron., Vol. 56, No. 6, pp. 2140-2149, Jun. 2009. https://doi.org/10.1109/TIE.2009.2015359
  39. S. Moon, B.-C. Kim, S.-Y. Cho, C.-H. Ahn, and G.-W. Moon, "Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency," IEEE Trans. Ind. Electron., Vol. 61, No. 11, pp. 5861-5870, Nov. 2014. https://doi.org/10.1109/TIE.2014.2301762
  40. W. Zhong, C. Zhang, X. Liu, and S. Y. R. Hui, "A methodology for making a 3-coil wireless power transfer system more energy efficient than a 2-coil counterpart for extended transmission distance," IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 933-942, Feb. 2015. https://doi.org/10.1109/TPEL.2014.2312020
  41. A. Pevere, R. Petrella, C. C. Mi, and S. Zhou, "Design of a high efficiency 22 kW wireless power transfer system for EVs fast contactless charging stations," 2014 IEEE Int. Electr. Veh. Conf. IEVC 2014, 2015.
  42. S. Moon and G.-W. Moon, "Wireless power transfer system with an asymmetric four coil resonator for electric vehicle battery chargers," IEEE Trans. Power Electron., Vol. 31, No. 10, pp. 6844-6854, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2506779
  43. J. Yin, D. Lin, T. Parisini, and S. Y. Ron Hui, "Front-end monitoring of the mutual inductance and load resistance in a series-series compensated wireless power transfer system," IEEE Trans. Power Electron., Vol. 31, No. 10, pp. 7339-7352, Oct. 2016. https://doi.org/10.1109/TPEL.2015.2509962
  44. W. Zhong, C. K. Lee, and S. Y. Ron Hui, "General analysis on the use of tesla's resonators in domino forms for wireless power transfer," IEEE Trans. Ind. Electron., Vol. 60, No. 1, pp. 261-270, Jan. 2013. https://doi.org/10.1109/TIE.2011.2171176
  45. W. Q. Niu, J. X. Chu, W. Gu and A. D. Shen, "Exact analysis of frequency splitting phenomena of contactless power transfer systems," IEEE Trans. Circuits Syst., Vol. 60, No. 6, pp. 1670-1677, Jun. 2013. https://doi.org/10.1109/TCSI.2012.2221172
  46. Y. L. Lv, F. Y. Meng, B. J. Che, Y. H. Wu, Q. Wu, and L. Sun, "A novel method for frequency splitting suppression in wireless power transfer," Proc. 3rd Asia-Pacific Conf. Antennas Propagation, APCAP 2014, pp. 590-592, 2014.
  47. A. L. Albert, Radio Fundamentals, McGraw Hill Book Company Inc, Chap. 4, pp. 101-108, 1948.
  48. F. E. Terman, Electronic and Radio Engineerin, McGraw Hill Book Company Inc, Chap. 3, pp. 63-70, 1955.