• Title/Summary/Keyword: connection design

Search Result 2,565, Processing Time 0.029 seconds

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca;Luis Calado;Alper Kanyilmaz
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.237-252
    • /
    • 2023
  • The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.

Design Optimization for High Power Inverters

  • Schroder D.;Kuhn H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.713-717
    • /
    • 2001
  • This paper focuses on a network model for GCTs which can be used to investigate high power circuits with or without using RC-snubbers. The series connection of GCTs is commonly applied in the high power inverter field. Here expensive and space-consuming snubbers are applied, to overcome the problem of an asymmetric distribution of the blocking voltage among the single GCTs. As an alternative to large snubbers, a new active gate drive concept is proposed and investigated by simulation.

  • PDF

Analytical Model for the Calculations of Ultimate Moment Capacities of Double Angle Connections (더블앵글 접합부의 극한모멘트 산정을 위한 해석모델)

  • Yang, Jae-Geun;Lee, Gil-Young;Cho, Hye-Jung;Choun, Ji-Won
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.81-87
    • /
    • 2006
  • This study has been conducted to predict the ultimate moment capacities of double angle connections with various angle thicknesses and bolt gage distances. Considering the results of experimental tests conducted previously, a simplified analytical model is suggested in this research. In addition, some basic data are also provided for structural engineers to design a double angle connection preliminary.

  • PDF

A Study on the Design Characteristics of Communal Spaces in Vertical Urban Multi-Family Housing Community -Focused on the Territories of a Unit Boundary, Building Interior and Exterior Boundary- (수직적 도시 공동주거 커뮤니티에 적용된 공유공간의 계획특성 연구 -단위세대 경계부와 주거동 내부 및 경계부 영역을 중심으로-)

  • Cho, Min-Jung
    • KIEAE Journal
    • /
    • v.11 no.5
    • /
    • pp.55-67
    • /
    • 2011
  • The purpose of this research is to find applicable design characteristics and methods of communal spaces in vertical urban multi-family housing. With this goal, several overseas' multi-family housing projects are selected and their communal spaces are identified. The design characteristics of the communal spaces are analyzed with a special focus on the territories such as an individual unit boundary, building interior and exterior boundary. In terms of the framework for analysis, territoriality, openness, and unique characteristics are reviewed. As a result, the communal spaces are created using various spatial composition methods such as addition, subtraction, connection, extension, accumulation, and isolation. The communal space programs are integrated in plans and sections throughout the buildings. Visual openness and connection with surrounding urban environments are articulated by void spaces, transparent and translucent building materials, green spaces, and applications of graphical images. Communal identities and aesthetics are emphasized by unique building forms and space arrangements. The uses of finish materials, colors, objects, and images add strong characters to the communal spaces. For a further research, it is necessary to combine a design method study with residents' behaviors and community interactions.

Earthquake Resistance Capacity of a Typical Bridge by Connection Design (연결부분 설계에 의한 일반교량의 내진성능)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.543-550
    • /
    • 2010
  • Earthquake resistant design should provide a description of the structural failure mechanism under earthquakes as well as satisfy the requirement of other designs, e.g. design strengths of each structural member should be equal or greater than the required strengths. The reason of such a requirement is the randomness of seimic loads different from other loads. In this study, a typical bridge is selected as an analysis bridge and the procedure is given to get the ductile failure mechanism through connection design. It is shown with the procedure that the earthquake resistant capacity can be ensured within structural member's strengths required by other designs, without cost raise by strength increase of structural members or by use of shock absorbing device e.g. shock transfer unit.

Effects of Design Parameters of Steel-Embedded Precast Composite Piers (강재매입형 조립식 합성교각의 설계 변수 영향)

  • Shim, Chang-Su;Lim, Hyun-Sik;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.53-54
    • /
    • 2009
  • Steel-embedded composite piers provide flexible design alternatives to satisfy the required performance due to various design parameters of composite sections. For the fast construction of composite piers, bolt connection can be utilized for small size piers and post-tensioning to the pier segments for the large size piers. In this paper, experimental results on composite piers were investigated to evlauate the effects of design parameters on the behavior of composite piers. Appropriate sections and their integration methods were suggested according to the design conditions. For the modular construction of bridge piers, pier segments need to be divided considering their weight and careful considerations on details to adjust fabrication and construction error. Connection details for the pier cap were also proposed.

  • PDF

Test and Analysis on the Transverse Gusset Plate Connection to Circular Hollow Section(CHS) of High Strength (고강도 원형강관의 직각방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • A connection composed of a circular hollow structural section (HSS) has complicated details, and exhibits a very complex local deformation when it reaches the yield stress. Given these circumstances, proposing a simple design equation considering local deformation is difficult. The design equations of the Korea Building Code (KBC 2009) for HSS joints are simple and are very similar to those of the AISC. These design equations limit the maximum yield stress up to 360MPa and yield ratio (yield strength/tensile strength) up to 0.8. This means that the material with yield strength exceeding 360MPa could be used after verification based on the test or rational analysis for the similar connection. This paper introduces an experimental program and finite element analysis (FEA) for the circular hollow section (CHS) with a transverse gusset plate made of high-strength steel (HSB600) or structural steel (SS400) when the joints are subjected to lateral force. Comparison of the design equations with the results of FEA and test may be used for the modification of the design equations.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.

Structural Performance of H-shaped Column-Rafter Connection in the P.E.B Systematic Steel Frames (P.E.B 시스템 강골조에서 H형강 기둥 - Rafter 접합부의 구조성능)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.347-356
    • /
    • 2005
  • Recently, pre-engineering building (P.E.B.) systematic frames are increasingly being used in steel factory buildings, but almost of the related techniques are dependent on the engineering program (e.g, MBS, LTI), which is usually imported from other countries. These are designed under the AISC-ASD because at present there is no Korean design code for P.E.B. frames. Also, there are few studies onbehaviour and we need to develop the element techniques by using H-shaped components.In particular, there is a tendency towards overestimated design because column-rafter connections have been designed with extended end plate type joint, which is treated asrigid joint,so structural examinations are needed. Therefore, this study represents a basic step in ascertaining the application of P.E.B. systematic frames by using H-shaped column-rafter connectionwith flush type end plate. Its structural performance is compared with that of existing extended type joint using a structural performance test. The structural behaviour of specimen was understood qualitatively and the possibility of application (e.g, design aid charts) of semi-connection (flush type) with H-shaped column-rafter was determined.