DOI QR코드

DOI QR Code

Dissipative Replaceable Bracing Connections (DRBrC) for earthquake protection of steel and composite structures

  • Jorge M. Proenca (CERIS, Instituto Superior Tecnico, Universidade de Lisboa) ;
  • Luis Calado (CERIS, Instituto Superior Tecnico, Universidade de Lisboa) ;
  • Alper Kanyilmaz (Department of Architecture, Built Environment and Construction Engineering, Politecnico di Milano)
  • Received : 2022.05.17
  • Accepted : 2022.12.12
  • Published : 2023.01.25

Abstract

The article describes the development of a novel dissipative bracing connection device (identified by the acronym DRBrC) for concentrically braced frames in steel and composite structures. The origins of the device trace back to the seminal work of Kelly, Skinner and Heine (1972), and, more directly related, to the PIN-INERD device, overcoming some of its limitations and greatly improving the replaceability characteristics. The connection device is composed of a rigid housing, connected to both the brace and the beam-column connection (or just the column), in which the axial force transfer is achieved by four-point bending of a dissipative pin. The experimental validation stages, presented in detail, consisted of a preliminary testing campaign, resulting in successive improvements of the original device design, followed by a systematic parametric testing campaign. That final campaign was devised to study the influence of the constituent materials (S235 and Stainless Steel, for the pin, and S355 and High Strength Steel, for the housing), of the geometry (four-point bending intermediate spans) and of the loading history (constant amplitude or increasing cyclic alternate). The main conclusions point to the most promising DRBrC device configurations, also presenting some suggestions in terms of the replaceability requirements.

Keywords

Acknowledgement

The studies reported in this article were conducted within the scope of the DISSIPABLE (Fully Dissipative and Easily Repairable Devices for Resilient Buildings with Composite Steel-Concrete Structures, reference EU RFCS 2017 Project No 800699) research project, financed by the Research Fund for Coal and Steel, of the European Commission. The availability of all the involved organizations - POLIMI (Politecnico di Milano, Italy), IST-UL (Instituto Superior Tecnico, Universidade de Lisboa, Portugal), NTUA (National Technical University of Athens, Greece), SOFMAN (Masina Team SA, Greece), UNITN (Universita degli studi di Trento, Italy), RWTH (Institute for Steel Structures, Aachen University, Germany), RINA (Rina Consulting - Centro Sviluppo Materiali SPA, Italy), UNIPI (Universita di Pisa, Italy) - as well as the insight and clairvoyance of Professor Carlo A. Castiglioni (Politecnico di Milano, Italy) are gratefully acknowledged. The first two authors are grateful for the Foundation for Science and Technology's support through funding UIDB/04625/2020 from the research unit CERIS. The experimental tests of the DRBrC devices were conducted in LERM of IST - UL with the intensive assistance of the graduates Diogo Cabrita, Nuno Rosas and Sergio Nascimento, whose contribution is also acknowledged with gratitude.

References

  1. Aghlara, R. and Tahir, M. (2018), "A passive metallic damper with replaceable steel bar components for earthquake protection of structures", Eng. Struct., 159, 185-197. https://doi.org/10.1016/j.engstruct.2017.12.049.
  2. Balendra, T., Yu, C.H. and Lee, F.L. (2001), "An economical structural system for wind and earthquake loads", Eng. Struct., 23(5), 491-501. https://doi.org/10.1016/S0141-0296(00)00061-4.
  3. Braconi, A., Morelli, F. and Salvatore, W. (2012b), "Development, design and experimental validation of a steel self-centering device (SSCD) for seismic protection of buildings", Bull. Earthq. Eng., 10(6), 1915-1941. https://doi.org/10.1007/s10518-012-9380-9.
  4. Calado, L., Proenca, J.M., Espinha, M. and Castiglioni, C.A. (2013a), "Hysteretic behavior of dissipative welded fuses for earthquake resistant composite steel and concrete frames", Steel Compos. Struct., 14(6), 547-569. https://doi.org/10.12989/scs.2013.14.5.547.
  5. Calado, L., Proenca, J., Espinha dos Santos, M. and Castiglioni, C.A. (2013b), "Hysteretic behaviour of dissipative bolted fuses for earthquake resistant steel frames", J. Construct. Steel Res., 85(1), 151-162. https://doi.org/10.1016/j.jcsr.2013.02.016.
  6. Calado, Luis, Proenca, J.M. and Sio, J. (2020), "Seismic design and assessment of steel-concrete frame structures with welded dissipative fuses", Steel Compos. Struct., 35(4), 527-544. https://doi.org/10.12989/scs.2020.35.4.527.
  7. Cardone, D., Dolce, M., Ponzo, F. and Coelho, E. (2004), "Experimental behaviour of R/C frames retrofitted with dissipating and RE-centring braces", J. Earthq. Eng., 8(3), 361-396. https://doi.org/10.1080/13632460409350493.
  8. Chan, R. and Albermani, F. (2008), "Experimental study of steel slit damper for passive energy dissipation", Eng. Struc., 30(4), 1058-1066. https://doi.org/10.1016/j.engstruct.2007.07.005.
  9. de la Llera, Juan, Esguerra, Carlos and Almazan, Jose. (2004), "Earthquake behavior of structures with copper energy dissipators", Earthq. Eng. Struct. Dyn., 33(3), 329-358. https://doi.org/10.1002/eqe.354.
  10. Desombre, J., Rodgers, G.W., MacRae, G.A., Rabczuk, T., Dhakal, R.P. and Chase, J.G. (2011), "Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses", Struct. Eng. Mech., 37(4), 385-399. https://doi.org/10.12989/sem.2011.37.4.385.
  11. Di Cesare, A., Ponzo, F., Nigro, D., Dolce, M. and Moroni, C. (2012), "Experimental and numerical behaviour of hysteretic and visco-recentring energy dissipating bracing systems", Bull. Earthq. Eng., 10(5), 1585-1607. https://doi.org/10.1007/s10518-012-9363-x.
  12. Dolce, M., Cardone, D. and Marnetto, R. (2000), "Implementation and testing of passive control devices on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-968. https://doi.org/10.1002/1096-9845(200007)29:7<945::AID-EQE958>3.0.CO;2-#
  13. Gowda, K.K. and Kiran, K.K. (2013), "Earthquake resistance of structures using dampers - a review", Int. J. Adv. Struct. Geotech. Eng., 02(01), 31-35.
  14. Ioan-Chesoan, A., Stratan, A. and Dubina, D. (2013), "Numerical simulation of bolted links removal in eccentrically braced frames", Pollack Periodica, 8(1), 15-26. https://doi.org/10.1556/Pollack.8.2013.1.2.
  15. Kelly, J.M., Skinner, R.I. and Heine, A.J. (1972), "Mechanisms of energy absorption in special devices for use in earthquake resistant structures", Bull. New Zealand Soc. Earthq. Eng., 5(3), 63-88. https://doi.org/10.5459/bnzsee.5.3.63-88.
  16. Koetaka, Y., Chusilp, P., Zhang, Z., Ando, M., Suita, K., Inoue, K. and Uno, N. (2005), "Mechanical property of beam-to-column moment connection with hysteretic dampers for column weak axis", Eng. Struct., 27(1), 109-117. 10.1016/j.engstruct.2004.09.002.
  17. Mander, T.J., Rodgers, G.W., Chase, J.G., Mander, J.B., MacRae, G.A. and Dhakal, R.P. (2009), "Damage avoidance design steel beam-column moment connection using high-force-to-volume dissipators", J. Struct. Eng., 135(11), 1390-1397. https://doi.org/10.1061/(asce)st.1943-541x.0000065.
  18. Martínez-Rueda, Juan. (2002), "On the evolution of energy dissipation devices for seismic design", Earthq. Spectra, 10(2), 309-346. https://doi.org/10.1193/1.1494434.
  19. Mazza, F. and Vulcano, A. (2014), "Equivalent viscous damping for displacement-based seismic design of hysteretic damped braces for retrofitting framed buildings", Bull. Earthq. Eng., 12, 2797-2819. https://doi.org/10.1007/s10518-014-9601-5.
  20. Mirtaheri, M., Nazeryan, M., Bahrani, M., Nooralizadeh, A., Montazerian, L. and Naserifard, M. (2017), "Local and global buckling condition of all-steel buckling restrained braces", Steel Compos. Struct., 23(2), 217-228. https://doi.org/10.12989/scs.2017.23.2.217.
  21. Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997- 2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
  22. Ozkilic, Y. (2020), "A new replaceable fuse for moment resisting frames: Replaceable bolted reduced beam section connections", Steel Compos. Struct., 35(3), 353-370. https://doi.org/10.12989/scs.2020.35.3.353.
  23. Palermo, M., Silvestri, S., Gasparini, G. and Trombetti, T. (2014), "Crescent shaped braces for the seismic design of building structures", Mater. Struct., 48(5), 1485-1502. https://doi.org/10.1617/s11527-014-0249-z.
  24. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423.
  25. Ponzo, F., Di Cesare, A., Nigro, D., Vulcano, A., Mazza, F., Dolce, M. and Moroni, C. (2012), "Jet-Pacs Project: Dynamic experimental tests and numerical results obtained for a steel frame equipped with hysteretic damped chevron braces", J. Earthq. Eng., 16(5), 662-685. https://doi.org/10.1080/13632469.2012.657335.
  26. Quaglini, V., Pettorruso, C. and Bruschi, E. (2021), "Experimental and Numerical Assessment of Prestressed Lead Extrusion Dampers", Ingegneria Sismica/ Int. J. Earthq. Eng., 38, 46-68.
  27. Quaglini, V., Pettorruso, C. and Bruschi, E. (2022), "Design and experimental assessment of a prestressed lead damper with straight shaft for seismic protection of structures", Geosciences, 12(5), 182. https://doi.org/10.3390/geosciences12050182.
  28. Soydan, C., Yuksel, E. and Irtem, E. (2014), "The behavior of a steel connection equipped with the lead extrusion damper", Adv. Struct. Eng., 17(1), 25-39. https://doi.org/10.1260/1369-4332.17.1.25.
  29. Symans, M., Charney, F., Whittaker, A., Constantinou, M., Kircher, C., Johnson, M. and McNamara, R. (2008), "Energy Dissipation Systems for Seismic Applications: Current Practice and Recent Developments", J. Struct. Eng., 134(1), 3-21. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(3).
  30. Taiyari, F., Mazzolani, F. and Bagheri, S. (2019), "A proposal for energy dissipative braces with U-shaped steel strips", J. Construct. Steel Res., 154(1), 110-122. https://doi.org/10.1016/j.jcsr.2018.11.031.
  31. Yan, X., Chen, Z., Qi, A., Wang, X. and Shi, S. (2018), "Experimental and theoretical study of a lead extrusion and friction composite damper", Eng. Struct., 177, 306-317. https://doi.org/10.1016/j.engstruct.2018.09.080.
  32. Zhang, X.C. and Xu, Z.D. (2012), "Testing and modeling of a CLEMR damper and its application in structural vibration reduction", Nonlinear Dyn., 70(2), 1575-1588. https://doi.org/10.1007/s11071-012-0557-1.
  33. Zhou, Y., Hetian, S., Cao, Y. and Lui, E. (2021), "Application of buckling-restrained braces to earthquake-resistant design of buildings: A review", Eng. Struct., 246(5) 112991. 1-20. https://doi.org/10.1016/j.engstruct.2021.112991.
  34. Braconi, A., Morelli, F. and Salvatore, W. (2012a), "Seismic protection of structures through an innovative steel-based self-centering hysteretic device: numerical analysis and tests", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, September.
  35. Masoud, S., Alehashem, S., Keyhani, A. and Pourmohammad, H. (2008), "Behavior and performance of structures equipped with ADAS & TADAS dampers (a comparison with conventional structures)", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, October.
  36. Vayas, I., Thanopoulos, P., Castiglioni, C., Plumier, A. and Calado, L. (2005), "Behaviour of seismic resistant braced frames with innovative dissipative (INERD) connections", Proceedings of the 4th European Conference on Steel and Composite Structures (EUROSTEEL), Maastrich, June.
  37. Braconi, A., Osta, A., Dall'Asta, A., Leoni, G., Moller, S., Hoffmeister, B., Karamanos, S., Varelis, G., Alderighi, E., Coscetti, C., Salvatore, W., Gracia, J., Bayo, E., Mallardo, R., Bianco, L., Filipuzzi, P., Vasilikis, D., Tsintzos, P., Estanislau, S. and Hradil, P. (2013a), Prefabricated Steel Structures for Low-Rise Buildings in Seismic Areas (PRECASTEEL). RFCS Publications, Brussels, Belgium. https://doi.org/10.2777/5499.
  38. Braconi, A., Tremea, A., Lomiento, G., Bonessio, N., Braga, F., Hoffmeister, B., Gundel, M., Karmanos, S., Varelis, G., Obiala, R., Tsintzos, P., Vasilikis, D., Lobo, J., Bartlam, P., Estanislau, S., Nardini, L., Morelli, F., Salvatore, W. and Leven, J. (2013b), Steel Solutions for Seismic Retrofit and Upgrade of Existing Constructions (STEELRETRO). RFCS Publications, Brussels, Belgium. 10.2777/7937.
  39. Plumier, A., Doneaux, C., Castiglioni, C., Brescianini, J.C., Crespi, A., Dell'Anna, S., Lazzarotto, L., Calado, L., Ferreira, J., Feligioni, S., Bursi, O., Ferrario, F., Sommavilla, M., Vayas, I., Thanopoulos, P. and Demarco, T. (2006), Two Innovations for earthquake-resistant design: The INERD Project. RFCS Publications, Brussels, Belgium. https://doi.org/10.13140/RG.2.2.16388.12160.
  40. Vayas, I., Thanopoulos, P., Tsarpalis, P., Dimakogianni, D., Henriques, J., Degee, H., Hoffmeister, B., Pinkawa, M., Castiglioni, C.A., Alavi, A., Brambilla, G., Calado, L., Proenca, J.M., Sio, J., Chesoan, A., Stratan, A., Dubina, D., Neagu, C., Dinu, F., Georgiev, T., Raycheva, L., Zhelev, D., Rangelov, N., Morelli, F., Natali, A., Salvatore, W., Butz, C., Renzi, V., Butz, C. and Medeot, R. (2017), Innovative Anti-Seismic Devices and Systems (INNOSEIS), (1st Edition), ECCS - European Convention for Constructional Steelwork, Brussels, Belgium.
  41. ASTM A370 (2020), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International West Conshohocken, PA, US.
  42. ECCS (1986), Report No. 45. Recommended Testing Procedure for Assessing the Behaviour of Structural Steel Elements Under Cyclic Loads, European Convention for Constructional Steelwork, Brussels, Belgium.
  43. CEN (2004), EN1998-1:2004 Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardisation, Brussels.
  44. CEN (2005), EN10088-1:2005 Stainless steels - Part 1: List of Stainless Steels, European Committee for Standardisation, Brussels.
  45. EN10002-1 (2001), Metallic Materials - Tensile Testing - Part 1: Method of Test at Ambient Temperature. European Committee for Standardisation, Brussels.