• Title/Summary/Keyword: connection between mathematical knowledge

Search Result 21, Processing Time 0.024 seconds

A Short Discussion about Connection of Informal and Formal Mathematical Knowledge (비형식적 수학적 지식과 형식적 수학적 지식의 결합에 관한 소고)

  • 김진호
    • School Mathematics
    • /
    • v.4 no.4
    • /
    • pp.555-563
    • /
    • 2002
  • The purpose of this paper is to try formulating a working definition of connection of informal and formal mathematical knowledge. Many researchers have suggested that informal mathematical knowledge should be connected with school mathematics in the process of learning and teaching it. It is because informal mathematical knowledge might play a important role as a cognitive anchor for understanding school mathematics. To implement the connection of them we need to know what the connection means. In this paper, the connection between informal and formal mathematical knowledge refers to the making of relationship between common attributions involved with the two knowledge. To make it clear, it is discussed that informal knowledge consists of two properties of procedures and conceptions as well as formal mathematical knowledge does. Then, it is possible to make a connection of them. Now it is time to make contribution of our efforts to develop appropriate models to connect informal and formal mathematical knowledge.

  • PDF

An Analysis of Connection between Errors and Prior Knowledge in Decimal Calculations of 6th Grade Students (초등학교 6학년 학생들의 소수 계산 오류와 선행지식 간의 연결 관계 분석 및 지도방안 탐색)

  • Pang Jeong-Suk;Kim Jae-Hwa
    • The Mathematical Education
    • /
    • v.45 no.3 s.114
    • /
    • pp.275-293
    • /
    • 2006
  • The purpose of this study was to analyze the connection between students' errors and prior knowledge as an attempt to design an efficient teaching method in decimal computation. A survey on decimal computations was conducted in two 6th grade elementary school classrooms. Error patterns on decimal computations were analyzed and clinical interviews were conducted with 8 students according to their error patterns. Main errors resulted from the insufficient understanding of prior knowledge such as place value, connection between decimals and fractions, meaning of operations, and computation principles of fractions. In order to help students overcome such obstacles, a teaching experiment was designed in a manner that strengthens a profound understanding of prior knowledge related to decimal computations, and connects such knowledge to actual decimal calculations. This study showed that well-designed lesson plans with base-ten blocks might decrease students' errors by helping them understand decimals and connect their prior knowledge to decimal operations.

  • PDF

The Connection between Informal Knowledge and Formal Knowledge on Division (자연수 나눗셈에 관한 비형식적 지식과 형식적 지식의 연결 방안)

  • Lee, Jong-Euk
    • The Mathematical Education
    • /
    • v.47 no.1
    • /
    • pp.91-106
    • /
    • 2008
  • Interviews with 24 pupils in grade 1-2 were used to investigate awareness of the relation between situation and computation in simple quotitive and partitive division problems as informally experienced. Then it was suggested how to connect children's informal knowledge and formal knowledge of division. Most subjects counted cubes or made drawing, and related these methods to the situation described in the problems. In result, quotitive division was experienced as a dealing situation, where the number of items represented by the divisor was repeatedly taken from the whole number. And estimate-adjust was the most frequently displayed way of experiencing partitive division. Therefore, partitive division with its two measurement variables can be related to a measurement model. And children should be taught column algorithms for division with estimated-adjust which pupils used for partitive division problems.

  • PDF

1st Graders' Achievements Who have Experienced Learning and Teaching Practices in Learner-Centered Classroom during First School Year (학습자 중심 수학 수업을 1년간 받은 1학년 학생들의 학업 성취도)

  • Kim, Jin-Ho
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.11 no.1
    • /
    • pp.23-42
    • /
    • 2007
  • Learners who have taken learner-centered instruction is expected to construct conceptually mathematical knowledge which is. If so, they can have some ability to solve problems they are confronted with in the first time. To know this, First graders who have been in learner-centered instruction during 1 school year was given 7+52+186 which usually appears in the national curriculum for 3rd grade. According to the results, most of them have constructed the logic necessary to solve the given problem to them, and actually solve it. From this, it can be concluded that first, even though learners are 1st graders they can construct mathematical knowledge abstractly, second, they can apply it to the new problem, and third consequently they can got a good score in a achievement test.

  • PDF

An Analysis of the Connection between Mathematics and other Subjects in the Seventh Grade Mathematics Textbook (2015 개정 중학교 1학년 수학 교과서에 반영된 교과 연계 분석 - 문자와 식 단원을 중심으로)

  • Yoon, Si Yeong;Huh, Nan
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.537-554
    • /
    • 2018
  • The era of the Fourth Industrial Revolution calls for creativity - convergence talent. In addition to having mathematical knowledge, they can create new technologies by linking them to other fields. This social trend is also reflected in the 2015 revised curriculum, and plans to further expand the STEAM education emphasized since 2011. Many teachers who had previous experience with STEAM training were satisfied with the STEAM teaching effectiveness. However, the reality is that the lack of expertise in other subjects is causing a burden on the ongoing implementation of convergence education. One way to alleviate these teachers' burden is to find the STEAM elements and then apply. Since the convergence education is required continuously, it is necessary to analyze the textbook according to the 2015 curriculum. In this study, we examined how the elements of the STEAM were apply in 7th grade textbooks. Based on the classification framework proposed by Yakman (2008), a new classification framework was devised and applied to the analysis.

An Analysis of Teaching and Learning Methods Focusing on the Representation-Shift of the Functional Context (일차함수 활용문제의 해결을 위한 강의식, 모델링, 과제기반 표현변환 학습의 교수학적 효과 분석)

  • 이종희;김부미
    • Journal of Educational Research in Mathematics
    • /
    • v.14 no.1
    • /
    • pp.39-69
    • /
    • 2004
  • This paper investigates the teaching and learning of Linear function relating functional contexts and suggests the improved methods of representation-shift through this analysis. The methods emphasize the link between students' preacquired knowledge of mathematical representations and the way of using those. This methods are explanatory teaching, teaching and teaming based on modelling perspectives or tasks (interpretation, prediction, translation and scaling). We categorize the 8th grade middle school students' errors on the linear function relating real contexts and make a comparative study of the error-remedial effects and the teaching and teaming methods. We present the results of a study in which representation-shift methods based on modelling perspectives and tasks are more effective in terms of flexible connection of representations and error remediation. Also, We describe how students used modelling perspective-taking to explain and justify their conceptual models, to assess the quality of their models and to make connection to other mathematical representation during the problem solving focusing on the students' self-diagnosis.

  • PDF

AN EXTENSION OF THE BETA FUNCTION EXPRESSED AS A COMBINATION OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Marfaing, Olivier
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.183-197
    • /
    • 2021
  • Recently several authors have extended the Beta function by using its integral representation. However, in many cases no expression of these extended functions in terms of classic special functions is known. In the present paper, we introduce a further extension by defining a family of functions Gr,s : ℝ*+ → ℂ, with r, s ∈ ℂ and ℜ(r) > 0. For given r, s, we prove that this function satisfies a second-order linear differential equation with rational coefficients. Solving this ODE, we express Gr,s as a combination of confluent hypergeometric functions. From this we deduce a new integral relation satisfied by Tricomi's function. We then investigate additional specific properties of Gr,1 which take the form of new non trivial integral relations involving exponential and error functions. We discuss the connection between Gr,1 and Stokes' first problem (or Rayleigh problem) in fluid mechanics which consists in determining the flow created by the movement of an infinitely long plate. For $r{\in}{\frac{1}{2}}{\mathbb{N}}^*$, we find additional relations between Gr,1 and Hermite polynomials. In view of these results, we believe the family of extended beta functions Gr,s will find further applications in two directions: (i) for improving our knowledge of confluent hypergeometric functions and Tricomi's function, (ii) and for engineering and physics problems.

The Perception of the Professors and Teachers about the Education on Quadratic Curves in Various Universities (사범대학의 이차곡선 영역 교육에 대한 교수 및 교사의 인식)

  • Yi, Seunghun;Cho, Wan Young
    • School Mathematics
    • /
    • v.16 no.4
    • /
    • pp.827-845
    • /
    • 2014
  • This study aims to investigate how the university educational programs about quadratic curves are operated in relation to the high school curriculum and what their effects may be, and the degree of understanding for the prospective and current teachers of the mathematical content knowledge about quadratic curves. To solve this research questions, we randomly selected three universities and one high school. Then we investigated the curricula of each department of mathematics education, compared them with the high school curricula, and conducted surveys of the professors' and students' conception on how much mathematical content knowledge they need to know about quadratic curves. The study resulted in the following conclusions. First, the curriculum on the subject of quadratic curves in the college of education is closely connected to the high school programs. This study's results showed that the college of education's curriculum includes a series of lectures regarding quadratic curves, and that within them, the mathematical content about quadratic curves associated with high school mathematics was thoroughly covered. Also, a large number of students who attended the lecture reported a significant increase in their understanding in regards to the quadratic curves. Second, it is strongly recommended to strengthen the connection between the college of education's curriculum and the actual high school education field. The prospective teachers think that there is a substantial need to learn about the quadratic curves because it is closely connected with the high school curriculum. But they find it challenging to put what they were taught into practical use in the high school education field, and feel that an improvement in this area is much needed. Third, it is necessary to promote, encourage and support the voluntary efforts to expand the range of the content knowledge in quadratic curves to cover the academic content associated with the high school mathematics.

  • PDF

A study on historico-genetic principle of teaching and learning in mathematics (역사발생적 수학 학습-지도 원리에 관한 연구)

  • 우정호;민세영
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.3
    • /
    • pp.409-424
    • /
    • 2002
  • The historico-genetic principle has been advocated continuously, as an alternative one to the traditional deductive method of teaching and learning mathematics, by Clairaut, Cajori, Smith, Klein, Poincar$\'{e}$, La Cour, Branford, Toeplitz, etc. since 18C. And recently we could find various studies in relation to the historico-genetic principle. Lakatos', Freudenthal's, and Brousseau's are representative in them. But they are different from the previous historico- genetic principle in many aspects. In this study, the previous historico- genetic principle is called as classical historico- genetic principle and the other one as modern historico-genetic principle. This study shows that the differences between them arise from the historical views of mathematics and the development of the theories of mathematics education. Dewey thinks that education is a constant reconstruction of experience. This study shows the historico-genetic principle could us embody the Dewey's psycological method. Bruner's discipline-centered curriculum based on Piaget's genetic epistemology insists on teaching mathematics in the reverse order of historical genesis. This study shows the real understaning the structure of knowledge could not neglect the connection with histogenesis of them. This study shows the historico-genetic principle could help us realize Bruner's point of view on the teaching of the structure of mathematical knowledge. In this study, on the basis of the examination of the development of the historico-genetic principle, we try to stipulate the principle more clearly, and we also try to present teaching unit for the logarithm according to the historico- genetic principle.

  • PDF

An Extension of SWCL to Represent Logical Implication Knowledge under Semantic Web Environment (의미웹 환경에서 조건부함축 제약 지식표현을 위한 SWCL의 확장)

  • Kim, Hak-Jin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.3
    • /
    • pp.7-22
    • /
    • 2014
  • By the publications of RDF and OWL, the Semantic Web is confirmed as a technology through which information in the Internet can be processed by machines. The focus of the Semantic Web study after then has moved to how to provide more useful information to users for their decision making beyond simple use of the structured data in ontologies. SWRL that makes logical inference possible by rules, and SWCL that formulates constraints under the Semantic Web environment are some of many efforts toward the achievement of that goal. Constraint represents a connection or a relationship between individual data in ontology. Based on SWCL, this paper tries to extend the language by adding one more type of constraint, implication constaint, in its repertoire. When users use binary variables to represent logical relationships in mathematical models, it requires and knowledge on the solver to solve the models. The use of implication constraint ease this difficulty. Its need, definition and relevant technical description is presented by the use of the optimal common attribute selection problem in product design.