• 제목/요약/키워드: conformal Ricci soliton

검색결과 13건 처리시간 0.46초

CERTAIN SOLITONS ON GENERALIZED (𝜅, 𝜇) CONTACT METRIC MANIFOLDS

  • Sarkar, Avijit;Bhakta, Pradip
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.847-863
    • /
    • 2020
  • The aim of the present paper is to study some solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. We study gradient Yamabe solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. It is proved that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is gradient Einstein soliton then ${\mu}={\frac{2{\kappa}}{{\kappa}-2}}$. It is shown that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is closed m-quasi Einstein metric then ${\kappa}={\frac{\lambda}{m+2}}$ and 𝜇 = 0. We also study conformal gradient Ricci solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds.

RICCI-BOURGUIGNON SOLITONS AND FISCHER-MARSDEN CONJECTURE ON GENERALIZED SASAKIAN-SPACE-FORMS WITH 𝛽-KENMOTSU STRUCTURE

  • Sudhakar Kumar Chaubey;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • 제60권2호
    • /
    • pp.341-358
    • /
    • 2023
  • Our aim is to study the properties of Fischer-Marsden conjecture and Ricci-Bourguignon solitons within the framework of generalized Sasakian-space-forms with 𝛽-Kenmotsu structure. It is proven that a (2n + 1)-dimensional generalized Sasakian-space-form with 𝛽-Kenmotsu structure satisfying the Fischer-Marsden equation is a conformal gradient soliton. Also, it is shown that a generalized Sasakian-space-form with 𝛽-Kenmotsu structure admitting a gradient Ricci-Bourguignon soliton is either ψ∖Tk × M2n+1-k or gradient 𝜂-Yamabe soliton.