• Title/Summary/Keyword: conduction model

Search Result 525, Processing Time 0.024 seconds

Electrical Conduction and Resistance Switching Mechanisms of Ag/ZnO/Ti Structure

  • Nguyen, Trung Do;Pham, Kim Ngoc;Tran, Vinh Cao;TuanNguyen, Duy Anh;Phan, Bach Thang
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.229-233
    • /
    • 2013
  • We investigated electrical conduction and resistance switching behavior of the Ag/ZnO/Ti structures for random access memory devices. These films were prepared on glass substrate by dc sputtering technique at room temperature. The resistance switching follows unipolar switching mode with small switching voltages (0.4 V - 0.6 V). Two electrical conduction mechanisms dominating the LRS and HRS are Ohmic and trap-controlled space charge limited current, respectively. These both conductions are consistent with the filamentary model. Based on the filamentary model, the switching mechanism was also interpreted.

The Evaporation Shape of Deposited Droplet on the Hot Surface (고온표면에 부착된 액적의 증발형상 변화)

  • Bang Chang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.68-74
    • /
    • 2005
  • The objective of the present work is to examine the evaporation shape of deposited droplet on the hot surface. this paper performed the experiments as following conditions: (a) the surface temperature is within the range between $80^{\circ}C$ and $95^{\circ}C$ in the conduction and radiation, (b) droplet diameter is 3.0mm. The results are as follows; while droplet evaporates, droplet's radius is kept changelessly to $70\%$ evaporation time and droplet's shape is kept changelessly after. In case use Constant radius model, about $10\%$ is appearing high than value that time-averaged heat flux applies Inverse heat conduction.

Behavior of frost formed on heat exchanger fins (열교환기 휜에서의 착상 거동)

  • Kim, Jung-Soo;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2334-2339
    • /
    • 2008
  • This paper proposes an improved mathematical model for predicting the frosting behavior on a two-dimensional fin considering the heat conduction of heat exchanger fins under frosting conditions. The model consists of laminar flow equation in airflow, diffusion equation of water vapor for frost layer, and heat conduction equation in fin, and these are coupled together. In this model, the change in three-dimensional airside airflow caused by frost growth is accounted for. The fin surface temperature increased toward the fin tip due to the fin heat conduction. On the contrary, the temperature gradient in the airflow direction(x-dir.) is small throughout the entire fin. The frost thickness in the direction perpendicular to airflow, i.e. z-dir., decreases exponentially toward the fin tip due to non-uniform temperature distribution. The rate of decrease of heat transfer in the airflow direction is high compared to that in the z-direction due to more decrease in the sensible and latent heat rate in x-direction.

  • PDF

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim;Jinho Lee;Ryun Na Kim;Donghee Lee;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

A Study on the Electrical Conduction of Plasma-Co-Polymerized Organic Thin Film (플라즈마 공중합 유기 박막의 전기 전도에 관한 연구)

  • 육재호;박재윤;이덕출;박상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.108-111
    • /
    • 1988
  • In this study, the electrical conduction properties of plasma-polymerized (MMA+Styrene) thin film have been investigated. The measurements of transient conduction currents were carried out in the temperature of 50 to 150$^{\circ}C$ at electric field of 10$^4$to 10$\^$6/V/cm. The electric field-current density characteristic curves were divided into three regions-ohmic region, child region, sudden-increasing region. It is shown that the conduction mechanism of this thin film is in good agreement with SCLC(space charge limited current) model by applying the high field conduction theories.

  • PDF

Electrorheology of Chitosan Suspension by Conduction Models (전도성 모델에 의한 키토산 현탁액의 유변학적 특성 연구)

  • 최웅수;안병길;이상순;권오관
    • Tribology and Lubricants
    • /
    • v.14 no.4
    • /
    • pp.95-99
    • /
    • 1998
  • The electrorheological (ER) behavior of chitosan suspension in the silicone oil was investigated. Chitosan suspension showed a typical ER response, Bingham flow behavior upon application of an electric field due to the polarizability of the branched amino group of the chitosan particles. The shear yield stress exhibited a linear dependence on the volume fraction of particles and the squared electric field. On the basis of the experimental results, chitosan suspension has been correlated with the conduction models for ER response and found to be an ER fluid.

Analysis of Hyperbolic Heat Conduction in a Thin Film (박막에서 쌍곡선형 열전도 방정식에 의한 열전도 해석)

  • 정우남;이용호;조창주
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.540-545
    • /
    • 1999
  • The classical Fourier heat conduction equation is invalid at temperatures near absolute zero or at very early times in highly transient heat transfer processes. In such situations, a hyperbolic equation model for heat conduction based on the modified Fourier law is introduced because the wave nature of heat propagation becomes dominant. The Fourier model and the hyperbolic model for heat conduction are analyzed by using the Green's function technique together with the integral transform. Analytical expressions for the heat flux and temperature distributions in a finite slab subjected to a periodic surface heating at one of its surfaces are presented and the results obtained from each model are compared with each other. The thermal wave implied b the hyperbolic model is shown to travel through a medium and to reflect back toward the origin at the other insulated surface. On the other hand, the heat by the Fourier model propagates at an infinite speed instantaneously after a thermal disturbance is felt throughout the medium.

  • PDF

Modification of DC Flashover Voltage at High Altitude on the Basis of Molecular Gas Dynamics

  • Liu, Dong-Ming;Guo, Fu-Sheng;Sima, Wen-Xia
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.625-633
    • /
    • 2015
  • The effect of altitude on thermal conduction, surface temperature, and thermal radiation of partial arc was investigated on the basis of molecular gas dynamics to facilitate a deep understanding of the pollution surface discharge mechanism. The DC flashover model was consequently modified at high altitude. The validity of the modified DC flashover model proposed in this paper was proven through a comparison with the results of high-altitude simulation experiments and earlier models. Moreover, the modified model was found to be better than the earlier modified models in terms of forecasting the flashover voltage. Findings indicated that both the thermal conduction coefficient and the surface thermodynamics temperature of partial arc had a linear decrease tendency with the altitude increasing from 0 m to 3000 m, both of which dropped by approximately 30% and 3.6%, respectively. Meanwhile, the heat conduction and the heat radiation of partial arc both had a similar linear decrease of approximately 15%. The maximum error of DC pollution flashover voltage between the calculation value according to the modified model and the experimental value was within 6.6%, and the pollution flashover voltage exhibited a parabola downtrend with increasing of pollution.

Electrical properties of $(Ba,Sr)TiO_3$ thin films and conduction mechanism of leakage current ($(Ba,Sr)TiO_3$박막의 전기적 성질과 누설전류 전도기구)

  • 정용국;임원택;손병근;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.242-248
    • /
    • 2000
  • BST thin films were prepared with various deposition conditions by rf-magnetron sputtering. As substrate temperature increases and Ar/$O_2$ratio decreases, the electrical properties of the BST films improve. The conventional Schottky model and modified-Schottky model were introduced in order to investigate the leakage-current-conduction mechanisms of the deposited films. It was found that the modified-Schottky model better describes the current-conduction mechanism in the BST films than the conventional Schottky model. From the modified-Schottky model, optical dielectric constant ($\varepsilon$), electronic drift mobility ($\mu$), and barrier height $({\phi}_b)are calculated as $\varepsilon$=4.9, $\mu$=0.019 $\textrm{cm}^2$/V-s, and ${\phi}_b=0.79 eV.

  • PDF

Electrorheological Properties of Chitin and Chitosan Suspensions

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.