• Title/Summary/Keyword: conduction model

Search Result 525, Processing Time 0.026 seconds

The Discontinuous Conduction Mode(DCM) Modeling of DC/DC Converter and Critical Characteristic using Average Model of Switch (스위치 평균 모델을 이용한 DC/DC 컨버터의 전류불연속모드 모델링과 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.34-43
    • /
    • 2008
  • The state-space average model is extended to buck-boost, and buck-boost topology switching mode DC/DC converters and modified to have higher precision without increment of computation. The modified model is used in continuous conduction mode(CCM) switching DC/DC converters and some significant conclusions are derived. This paper discusses the discontinuous conduction mode(DCM) modeling of DC/DC converter and critical characteristic using average model of switch. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between continuous conduction mode(CCM) and discontinuous conduction mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment. A prototype featuring 15[V] input voltage, 24[V] output voltage, and 24[W] output power using MOSFET.

The DC/DC converter modeling using average model of switch and critical characterist (스위치 평균 모델을 이용한 DC/DC 컨버터 모델링 및 임계특성에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.129-133
    • /
    • 2005
  • This paper discusses DC/DC converter modeling using average model of switch and critical characterist. Average model of switch approach is expended to the modeling of boundary conduction mode DC/DC converters that operate at the boundary between Continuous Conduction Mode(CCM) and Discontinuous Conduction Mode(DCM). Frequency responses predicted by the average model of switch are verified by simulation and experiment.

  • PDF

The hopping variable range conduction in amorphous InAs thin films

  • Yao, Yanping;Bo, Baoxue;Liu, Chunling
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1492-1495
    • /
    • 2018
  • This paper studies the influence of temperature on electrical resistivity in ${\alpha}-InAs$ thin films between 30 K-2K based on the analysis of Mott VRH model and ES VRH model. The effect of the interactions between electrons at lower temperature must be considered, therefore, ES VRH conduction will dominate mechanism, and the crossover from Mott to ES VRH conduction is observed about 7 K. Based on available experiment data and VRH conduction model, the parameters of VRH conduction are determined. And the calculated values of $T_C$ are consistent with the experimental results. In addition, $R_M/{\xi}$, ${\Delta}_M/kT$, $R_{ES}/{\xi}$ and ${\Delta}_{ES}/kT$ are satisfied with the validity of Mott and ES models. Furthermore, the temperature dependence of resistivity at low temperature obeys a universal scaling law, which well describes the overall temperature range of VRH conduction. However, the values of $T^{\prime}_M$ from the universal function are two order of magnitudes lower than $T_M$ deduced from fitting experiment.

A GN-based modified model for size-dependent coupled thermoelasticity analysis in nano scale, considering nonlocality in heat conduction and elasticity: An analytical solution for a nano beam with energy dissipation

  • Hosseini, Seyed Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.287-302
    • /
    • 2020
  • This investigation deals with a size-dependent coupled thermoelasticity analysis based on Green-Naghdi (GN) theory in nano scale using a new modified nonlocal model of heat conduction, which is based on the GN theory and nonlocal Eringen theory of elasticity. In the analysis based on the proposed model, the nonlocality is taken into account in both heat conduction and elasticity. The governing equations including the equations of motion and the energy balance equation are derived using the proposed model in a nano beam resonator. An analytical solution is proposed for the problem using the Laplace transform technique and Talbot technique for inversion to time domain. It is assumed that the nano beam is subjected to sinusoidal thermal shock loading, which is applied on the one of beam ends. The transient behaviors of fields' quantities such as lateral deflection and temperature are studied in detail. Also, the effects of small scale parameter on the dynamic behaviors of lateral deflection and temperature are obtained and assessed for the problem. The proposed GN-based model, analytical solution and data are verified and also compared with reported data obtained from GN coupled thermoelasticity analysis without considering the nonlocality in heat conduction in a nano beam.

A Semi-analytical Model for Depletion-mode N-type Nanowire Field-effect Transistor (NWFET) with Top-gate Structure

  • Yu, Yun-Seop
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.152-159
    • /
    • 2010
  • We propose a semi-analytical current conduction model for depletion-mode n-type nanowire field-effect transistors (NWFETs) with top-gate structure. The NWFET model is based on an equivalent circuit consisting of two back-to-back Schottky diodes for the metal-semiconductor (MS) contacts and the intrinsic top-gate NWFET. The intrinsic top-gate NWFET model is derived from the current conduction mechanisms due to bulk charges through the center neutral region as well as of accumulation charges through the surface accumulation region, based on the electrostatic method, and thus it includes all current conduction mechanisms of the NWFET operating at various top-gate bias conditions. Our previously developed Schottky diode model is used for the MS contacts. The newly developed model is integrated into ADS, in which the intrinsic part of the NWFET is developed by utilizing the Symbolically Defined Device (SDD) for an equation-based nonlinear model. The results simulated from the newly developed NWFET model reproduce considerably well the reported experimental results.

Electrorheology of Hollow Polyaniline Pimelate Suspension by Conduction Model

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • v.7 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The electro rheological behavior of the hollow polyaniline pimelate suspension in silicone oil was investigated. Hollow polyaniline pimelate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.84 power on the electric field. The experimental results for the hollow polyaniline pimelate suspension correlated with the conduction models of Tang et al., and this suspension behaved as an ER fluid.

Electrorheological Properties of Cellulose Phosphate Ester Suspension by Conduction Models (전도성 모델에 의한 인산에스테르셀룰로오즈 현탁액의 전기유변학적 특성 연구)

  • 최웅수;고영건;박용성;권오관
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.124-129
    • /
    • 2001
  • The electrical and rheological behaviors of the cellulose phosphate ester suspension in the silicone oil were investigated. Cellulose phosphate ester suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the cellulose phosphate ester suspension exhibited a linear dependence on the volume fraction of particles and a square power of the electric field. On the basis of the experimental results, cellulose phosphate ester suspension correlated with the conduction model of Tang et al, and found to be an ER fluid.

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jeong Hak-Gi;Lee Jae-Hyeong;Lee Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.861-864
    • /
    • 2006
  • In this paper conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to obtain the analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper is compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gateoxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according to channel doping concentration.

  • PDF

Parameter dependent conduction path for nano structure double gate MOSFET (나노구조 이중게이트 MOSFET에서 전도중심의 파라미터 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.541-546
    • /
    • 2008
  • In this paper, conduction phenomena have been considered for nano structure double gate MOSFET, using the analytical model. The Possion equation is used to analytical model. The conduction mechanisms to have an influence on current conduction are thermionic emission and tunneling current, and subthreshold swings of this paper are compared with those of two dimensional simulation to verify this model. The deviation of current path and the influence of current path on subthreshold swing have been considered according to the dimensional parameters of double gate MOSFET, i.e. gate length, gate oxide thickness, channel thickness. The optimum channel doping concentration is determined as the deviation of conduction path is considered according doping concentration.

Modeling and Estimation of Cardiac Conduction System using Hidden Markov Model (HMM을 이용한 심장 전도 시스템의 모델화와 추정)

  • Halm, Zee-Hun;Park, Kwang-Suk
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.222-227
    • /
    • 1997
  • To diagnose cardiac arrhythmia owing to reentry mechanism, cardiac conduction system was modeled by modified Hidden Markov modeled by evaluated. First, simulation of transient conduction states and output waves were made with initially assumed parametric values of cardiac muscle repolariztion time, conduction velocity and its automaticity. The output was a series of onset time and the name of the wave. Parameters determined the rate of beating, lengths of wave intervals, rate of abnormal beats, and the like. Several parameter sets were found to simulate normal sinus rhythm, supraventricular /ventricular tachycardia, atrial /vetricular extrasystole, etc. Then, utilizing the estimation theorems of Hidden Markov Model, the best conduction path was estimated given the previous output. With this modified estimation method, close matching between the simulated conduction path and the estimated one was confirmed.

  • PDF