Electrorheology of Hollow Polyaniline Pimelate Suspension by Conduction Model

  • Choi Ung-Su (Tribology Centre, Korea Institute of Science and Technology)
  • Published : 2006.06.01

Abstract

The electro rheological behavior of the hollow polyaniline pimelate suspension in silicone oil was investigated. Hollow polyaniline pimelate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.84 power on the electric field. The experimental results for the hollow polyaniline pimelate suspension correlated with the conduction models of Tang et al., and this suspension behaved as an ER fluid.

Keywords

References

  1. Winslow, W.M., Induced Fibrationof Suspension, J. Appl.Phys., Vol. 20, pp.1137-1140, 1949 https://doi.org/10.1063/1.1698285
  2. Block, H. and Kelly, J. P., Electrorheology, J. Phys. D: Appl. Phys., Vol.21, pp.1661-1667, 1988 https://doi.org/10.1088/0022-3727/21/12/001
  3. Klingberg, D. J. and Zukoski, C. F, Studies on the Steady Shear Behavior of Electrorheological Suspensions, Langmuir, Vol. 6, pp. 15-24, 1990 https://doi.org/10.1021/la00091a003
  4. Conrad, H. and Chen, Y, Electrorheological Properties and the Strength of Electrorheological Fluids, Progress in Electrorheology, edited by K. O. Havelka and F.E.Filisko (Plenum Press, New York), pp.55-65, 1995
  5. Gow, C. J. and Zukoski, C. F, The Electrorheological Properties of Polyaniline Suspension, J. Colloid Interface Sci., Vol. 136, pp.175-188, 1990 https://doi.org/10.1016/0021-9797(90)90088-6
  6. Onsager, L., Deviation from Ohm's Law in Weak Electrolyst J. Chem. Phys., Vol.2, pp. 599-615, 1934 https://doi.org/10.1063/1.1749541
  7. Foulc, J. N., Felici, N.and Atten, P., C. R. Acad. Sci. Paris 107. 1995
  8. Davis, L. C., Polarization Forces and Conductivity Effects in Electrorheological Fluids, J. Appl. Phys. Vol. 72, pp. 1334-1340, 1992 https://doi.org/10.1063/1.351743
  9. Tang, X., Wu, C. and Conrad, H., On the Conductivity Model for the Electrorheological Effect, J. Rheol. Vol. 39, pp.1059-1073, 1995 https://doi.org/10.1122/1.550617
  10. Wu, C. and Conrad, H., A Modified Conduction Model for the Electrorheological Effect, J. Phys. D: Appl.Phys., pp.3147-3153, 1996
  11. Block, H. and Kelly, J. P., Materials and Mechanism In Electrorheology, Langmuir, Vol. 6, pp. 6-14, 1990 https://doi.org/10.1021/la00091a002
  12. Bloodworth, R.and Wendt, E., Electrorheological, Effect of Polyurethan Suspension, Progress in Electrorheology, edited by K. O. Havelka and F. E. Filisko (Plenum Press, New York), pp.185-192, 1995
  13. Menno, G. D., Alain, G., Colloid Polym. Sci. Vol. 281, pp. 105, 1992
  14. Conrad, H., Chen, Y.and Sprecher, A., The Strength of Electrorheological Fluids, J. of Modn. Phys. B, Vol. 16, pp. 2575-2583, 1992