• Title/Summary/Keyword: concrete material

Search Result 4,374, Processing Time 0.037 seconds

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

An Analysis of the Mechanism of Crack Stop-bar for Floor Plastering of Apartment Buildings (공동주택 바닥미장 균열차단막의 메커니즘 분석)

  • Song, Yong-Sik;Lee, Dong-Hoon;Lee, Sung-Ho;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.333-344
    • /
    • 2011
  • The recent expansion in the number of housing construction projects has been accompanied by substantial improvements in construction quality, which can be attributed to the development of new construction technologies and materials. In apartment complex construction projects, numerous mechanization technologies have been adopted as part of the floor plastering process to counter increasing difficulties in securing labor and the pressing need to reduce lead time, but these have also triggered setbacks such as additional costs or loss of time to fix cracks in or loosening of floor. Cracks developing in the floor of an apartment housing unit, in terms of materials in use, are the products of a complex combination of material makeup, construction workmanship, concrete curing and the protection method. Controlling such elements from the perspective of materials in use may ensure partial success in reducing cracks, but fall short of eliminating them completely. Any attempt to prevent cracks from developing in the first place requires systematic analysis as to their potential causes and viable solutions to reduce them. On this backdrop, this paper aims to provide an analysis of potential causes of cracks found in floor plastering, and consider the mechanism of a crack stop-bar as a fundamental safeguard against them.

The Strengthening Effects of Concrete Columns Confined with Carbon Fiber Sheets along the Fiber Direction (탄소섬유쉬트 올방향에 따른 콘크리트 기둥 보강성능)

  • Kim, Yang-Jung;Hong, Gap-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.326-332
    • /
    • 2011
  • Carbon, Aramid, Boron and Glass fibers are used as fibrous materials to promote structural bearing strength. Of these fiber types, carbon fiber is the most commonly used material, and is characterized by having a one-way direction, which is strengthened by tensile strength due to the attached direction only, while other types of fibers are two-way. Therefore, when applied in the field, the attachment direction of fiber is a very important factor. However, when fiber direction is not mentioned in the design drawing, there sometimes is no improvement in structural strength, as the fiber is being installed by a site engineer or workers who lack structural knowledge. The purpose of this study was to propose an optimal direction of carbon fiber through a comparison & analysis of reinforcing efficiency with reinforced experimental columns that used carbon fibers in each of the inclined, horizontal and vertical directions. According to the results, horizontal direction in the reinforced column was improved by 153.43%, but vertical direction was 104.61% only, and it was understood this was due to increased tensile strength along the fiber direction. For this reason, it is necessary to include information regarding fiber direction in design and site management.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Behavior of Geotextile Tube Composite Structure by 2-D Limit Equilibrium and Plane Strain Analysis (2차원 한계평형 및 평면변형해석을 통한 지오텍스타일 튜브 복합구조물의 거동분석)

  • Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The geotextile have been used in filtration and drainage for over 30 years in many applications of civil and environmental projects. Geotextile tube is compound technology of filtration and drainage property of geotextile. Geotextile have been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers, and other innovative systems involving containment of soils using geotextile. They are hydraulically filled with dredged materials. It have been applied in coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. This paper presents the behavior of geotextile tube composite structure by 2-D limit equilibrium and plane strain analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure for the lateral load and also the plane strain analysis was conducted to determine the design and construction factors. Based on the results of this paper, the three types of geotextile tube composite structure is stable. And the optimum tensile strength of geotextile is 151kN/m and maximum pumping pressure is 22.7kN/m.

  • PDF

Estimation of Seismic Performance and Earthquake Damage Ratio of Existing Reinforced Concrete Buildings in Japan (일본의 기존 철근콘트리트건물의 내진성능 및 지진피해율의 평가)

  • 이강석;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • The main objective of this paper is to apply as the basic data for development of a methodology to discuss the future earthquake preparedness measures in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all the countries of the world. This paper describes the seismic performance, Is-index, of existing RC buildings in Tokyo, Japan evaluated by the Japanese Standard, also the relationships between Is-index distribution of existing RC buildings in Tokyo and that of Shizuoka and Chiba Prefecture reported already in reference[4][5][6] are investigated. And from the comparison with Is-index to buildings damaged by earthquakes experienced in Japan, the damage ratio due to severe earthquake of 3 districts mentioned above is estimated based on the probabilistic point of view. The results of this study can be utilized to identify urgently required earthquake preparedness measures with highest priority in existing RC buildings, and the methodology to evaluate the seismic performance of existing RC buildings in Japan, statistics analysis method and the methodology to estimate earthquake damage ratio based on the probabilistic point of view shown in this study can be recommended to develop a methodology to discuss the future earthquake preparedness measures in Korea.

  • PDF

Performance Evaluation of RC Slabs Strengthened by Stiff Type PolyUrea (경질형 폴리우레아로 보강된 RC 슬래브의 성능 평가)

  • Park, Jeong Cheon;Lee, Sang Won;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.457-464
    • /
    • 2011
  • An experimental study was performed to evaluate the possibility of using stiff type PolyUrea(PU) on RC slab as a strengthening material. Stiff type PU(STPU) was sprayed on the bottom surface of the slab specimens, which were then attached with CFRP or GFRP sheets. Also the evaluation of the bond capacity, the single most influential parameter on strengthening of RC structures, was carried out the flexural capacity evaluation test results showed that the load carrying capacity of the PU specimen was greater and less than the unstrengthened and FRP sheet attached specimens, respectively. The STPU specimens showed a ductile flexural behavior in the plastic displacement range. With respect to bond capacity, the bond strength of all of the specimen exceeded the code required bond strength of 1.5 MPa. Also, the STPU sprayed specimen without using epoxy resin did not peel off when the tensile grip was applied for testing. The stability of the PU bond failure indicate a good bond strength of PU when applied to concrete.

Consumer Awareness Analysis of Residential Building Underground Structure Leakage Prevention Measurements (공동주택 지하공간 누수 예방 기술 정책 수립을 위한 소비자 인식 분석 연구)

  • Han, Yoon-Jung;Oh, Kyu-Hwan;Kim, Su-Ryon;Kim, Byoung-Il;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.379-387
    • /
    • 2016
  • In this study, a survey was conducted on the required measurement and waterproofing performance for residential building underground structure leakage prevention system. According to the results of the survey, it has been determined that leakage problem is considered to be quite severe, and many respondents have agreed. The legal guidelines and regulation systems do not reflect properly on the environmental requirements or conditions, resulting in continued leakage problem. In regards to this, a standardized waterproofing technique that can be used in underground areas of residential structures is required as an obligation and the development of high performance waterproofing method that allows for wet concrete surface adhesion and a guideline, design and maintenance method that allows the control of overall situational control of leakage is required.

Water Permeability Performance Evaluation of Mortar Containing Crack Self-healing Mineral Admixtures (균열 자기치유 재료 혼입 모르타르의 투수성능 평가)

  • Lee, Woong-Jong;Hwang, Ji-Soon;Ahn, Sang-Wook;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, compressive strength and water permeability performance for two types of crack self-healing materials such as SH-PO-0 composed of mineral admixtures(expansive agent, swelling material and crystal growth agent) and SH-PO-(5, 15, 30) blended with SH-PO-0 and phosphate additive(PO) dissolving easily calcium ion, were evaluated. The test results show that the water flow of SH-PO-0 decreased steeply at the early age although compressive strength decreased about 9% at 28 days compared with OPC. The higher PO replacement ratio is, the lower compressive strength and more improved water permeability performance is, and thus, based on such results, adequate PO replacement ratio is 15%. It is also found that the self-healing performance of SH-PO-15 was quite improved at the early ages and however, the performance of SH-PO-15 is similar to one of SH-PO-0 at long-term ages, and 28 days compressive strength of SH-PO-15 decreased about 8% compared with SH-PO-0. In addition, it is confirmed from the analysis of SEM-EDS that calcium ions of SH-PO-15 were crystallized more than those of SH-PO-0.

Case History of Sea Dyke Filter Construction Using Geotextile Tube Mattress (튜브형 매트리스를 활용한 방조제 필터공 축조사례연구)

  • Oh, Young-In;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.9-16
    • /
    • 2007
  • Geotextile is one of the most useful and effective polymer material in civil construction works and the main function of geotextile is separation, reinforcement, filtering and drainage. Recently, because of the shortage of natural rock, traditional forms of river and coastal structures have become very expensive to build and maintain. Therefore, the materials used in hydraulic and coastal structures are changing from the traditional rubble and concrete systems to the cheaper materials and systems. One of these alternatives employs geotextile tube technology in the construction of coastal and shore protection structures, such as embankment, see dyke, groins, jetties, detached breakwaters and so on. Geotextile tube technology has changed from being an alternative construction technique and, in fact, has advanced to become the most effective solution of choice. This paper presents case history of sea dyke filter construction using geotextile tube mattress and also, various issues related to the tube mattress design and construction technology.

  • PDF