• Title/Summary/Keyword: concrete demolition

Search Result 123, Processing Time 0.019 seconds

A Study on the Behavior of Blasting Demolition for a Reinforced Concrete Structure Using Sealed Model Test and Particle Flow Analysis (축소모형실험과 입자결합모델 해석을 통한 철근 콘크리트 구조물의 발파해체 거동에 관한 비교 분석)

  • 채희문;전석원
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2004
  • In this study, a comparison was made between the resulting behaviors of scaled model test and particle flow analysis for blasting demolition of a reinforced concrete structure. For the test and analysis, a progressive failure of a five-story structure was considered. The dimension analysis was carried out to properly scale down the real structure into the laboratory size. The test model was made of the mixture of gypsum, sand and water along with soldering lead to analogy reinforcing steel bars. The ratio of mixing components was chosen to best represent the scaled down strength and deformation modulus. The columns and girders of the structure were precasted in the laboratory and assembled right before the blasting test. The numerical analysis of the blasting demolition was carried out using PFC2D (Particle Flow Analysis 2-Dimension by Itasca). The results of the blasting of concrete lahmen structure showed roughly identical demolition behavior between scaled model test and numerical test. For the blasting of the reinforced concrete structure, the results were more identical and closer to the real demolition behavior, since the demolition behavior was better represented in this case due to the increased tensile strength of the component.

A Study on the Recycling of Waste for Decrease of Environmental Pollution for the Building Construction (건축공사 환경오염저감을 위한 폐기물 재활용에 관한 연구)

  • Suhr, Myong-Suk;Son, Min-Kyu
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2005
  • The environment in which we live is changing at an accelerated rate according to the needs of times, concrete structures are increasing daily responding to this advanced lifestyle as a result of demolition and construction. The production of noise and vibration during demolition work on these concrete structures has a major negative influence on the present environment in which we live. As a result, controls on this form of pollution are being strengthened. The aim of this study is to analyze and investigate zero - emission for decrease of environmental pllution in architecture construction field.

  • PDF

Experimental Study on the Characteristics of Protection Materials for Explosive Demolition of Reinforced Concrete Column (철근콘크리트 기둥 발파해체를 위한 방호재 특성에 대한 실험적 연구)

  • 류창하;박용원;김양균
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.260-266
    • /
    • 1996
  • Safety concern is one of the most important parameters in the design of explosive building demolition. Laboratory experiments were performed to investigate the failure behaviour of concrete columns and the effects of protection materials. Fourteen reinforced columns with two sizes were constructed and the effects of protection materials were tested for two kinds of materials: non woven fabrics and wire net. The results showed that control of gas effects is a key to the control of flying chips. It was recommended to use both wire net and non woven fabrics as primary and secondary protection materials. Such protection method was successfully applied to the explosive demolition of 16 and 17-strory apartment buildings.and the results of a simulation on a model tunneling workings using diesel equipments are introduced. In case of typical model of tunneling face, the gas concentration of human height is about one third of roof concentration and right side half of the tunnel shows better environment than left half. NOx concentration of workings can be estimated about 0.45ppm which is much lower than permissible level(5 ppm).

  • PDF

Characteristics of Particle Size Distributions Generated in the Vicinity of Building Blasting Demolition Sites (발파해체현장에서 발생하는 순간분진의 입경분포 특성)

  • Lee, Kyoung-Hee;Kim, Hyo-Jin;Park, Chan-Gyu;Ko, Kwang-Baik
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • In building demolition work, major dust-generating activities are blasting concrete and rock. The aim of this study was to find the characteristic of particle size of dusts which were generated during building demolition work using explosion. The DustMate of the Turnkey-Instruments Ltd. was used for particulate size-selective sampling of the four sites. TSP(Total Suspended Particle), PM10(Particle Matter $10{\mu}m$), PM2.5(Particle Matter $2.5{\mu}m$), and PM1.0(Particle Matter $1.0{\mu}m$) were measured during building demolition work using explosion. The large particulate (higher than the diameter $10{\mu}m$) showed to be higher than 50%. The particulate ranged from $10{\mu}m\;to\;2.5{\mu}m$ showed about 30-40%. PM2.5 was not scarcely detected in the samples collected for building demolition work using explosion. We conclude that the dust generated during building demolition work using explosion has not most respirable particulate.

A Study on the Quality Evaluation of Recycled Aggregate (In the case of the Mortar Produced With Recycled Concrete Powder) (재생 골재의 품질 평가에 관한 연구 (콘크리트폐재의 미분말을 혼입한 재생몰탈의 경우))

  • 서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.172-179
    • /
    • 1996
  • Recently, the broken concrete lumps resulting from the demolition of concrete structures are creshed for reuse as aggregates(i.e. recycled fine and gravel). And also, in the processing of crusing, the recycled powder of an equivalent of between 20% to 30% by wt.% of the broken concrete lumps is generated. The extensive research of recycled concrete aggregates has been carried out in various parts of the world. But less reseatch on the reuse of recycled concrete powder has been carried out. It is the purpose of this report that the study on the quality evaluation of recycled aggregates for recycled concrete. In specially, this report deals with the properties such as flow, compressive strength, bending strength, drying shrinkage and wight loss rate of mortars replaced standard fine aggregate with recycled powders at the rate of 3, 7, 15, 20 and 30 wt.%. Since the characteristics of recycled mortars with the recycled powders were comparable to those of the normal mortar without the recycled powders as described above, its concretes could be found extensive application in such field as concrete products.

  • PDF

Development of Protection Techniques for Explosive Demolition of RC Pillar (철근콘크리트 기둥 발파해체를 위한 방호기술 연구)

  • Chang Ha Ryu;Byung Hee Choi;Yang Kyun Kim
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.17-28
    • /
    • 2002
  • Safety concern is one of the most important parameters in the design of building demolition by explosive blasting, Accidents were sometimes reported due to the flying chips of fragmented materials In building demolition work in urban area. Laboratory experiments were performed to investigate the failure behavior of reinforced concrete pillars under blast loading and to develop an effective protection technique. Sixteen reinforced concrete pillars were constructed. The failure behavior and the flying chip velocities were observed by means of a high-speed camera. Protection scheme was designed and the effects of several protection materials were investigated. Two kinds of non-woven fabrics and wire net were tested as protection materials. The results showed that reinforcing bar was one of the important factors to determine specific charges, and that mesh size of wire net and tied-up method affected the protection of flying chips. Control of gas effects is also a key to the control of flying chips. It was recommended to use both wire net and non-woven fabrics as primary and secondary protection materials. Such protection scheme was successfully applied to the explosive demolition of apartment buildings.