• Title/Summary/Keyword: concrete damaged plasticity

Search Result 42, Processing Time 0.02 seconds

FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model

  • Ferrotto, Marco F.;Cavaleri, Liborio;Trapani, Fabio Di
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2018
  • This paper deepens the finite element modeling (FEM) method to reproduce the compressive behavior of partially steel-jacketed (PSJ) RC columns by means of the Concrete Damaged Plasticity (CDP) Model available in ABAQUS software. Although the efficiency of the CDP model is widely proven for reinforced concrete columns at low confining pressure, when the confinement level becomes high the standard plasticity parameters may not be suitable to obtain reliable results. This paper deals with these limitations and presents an analytically based strategy to fix the parameters of the Concrete Damaged Plasticity (CDP) model. Focusing on a realistic prediction of load-bearing capacity of PSJ RC columns subjected to monotonic compressive loads, a new strain hardening/softening function is developed for confined concrete coupled with the evaluation of the dilation angle including effects of confinement. Moreover, a simplified efficient modeling approach is proposed to take into account also the response of the steel angle in compression. The prediction accuracy from the current model is compared with that of existing experimental data obtained from a wide range of mechanical confinement ratio.

Isogeometric analysis of gradient-enhanced damaged plasticity model for concrete

  • Xu, Jun;Yuan, Shuai;Chen, Weizhen
    • Computers and Concrete
    • /
    • v.23 no.3
    • /
    • pp.171-188
    • /
    • 2019
  • This study proposed a new and efficient 2D damage-plasticity model within the framework of Isogeometric analysis (IGA) for the geometrically nonlinear damage analysis of concrete. Since concrete exhibits complicated material properties, two internal variables are introduced to measure the hardening/softening behavior of concrete in tension and compression, and an implicit gradient-enhanced formulation is adopted to restore the well-posedness of the boundary value problem. The numerical results calculated by the model is compared with the experimental data of three benchmark problems of plain concrete (three-point and four-point bending single-notched beams and four-point bending double-notched beam) to illustrate the geometrical flexibility, accuracy, and robustness of the proposed approach. In addition, the influence of the characteristic length on the numerical results of each problem is investigated.

Piezoelectric skin sensor for electromechanical impedance responses sensitive to concrete damage in prestressed anchorage zone

  • Dang, Ngoc-Loi;Pham, Quang-Quang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.761-777
    • /
    • 2021
  • This study presents a numerical investigation on the sensitivity of electromechanical (EM) impedance responses to inner damaged concrete of a prestressed anchorage zone. Firstly, the Ottosen yield criterion is selected to simulate the plasticity behavior of the concrete anchorage zone under the compressive loading. Secondly, several overloading cases are selected to analyze inner damage formations in the concrete of the anchorage zone. Using a finite element (FE) model of the anchorage zone, the relationship between applied forces and stresses is analyzed to illustrate inner plasticity regions in concrete induced by the overloading. Thirdly, EM impedance responses of surface-mounted PZT (lead-zirconate-titanate) sensors are numerically acquired before and after concrete damage occurrence in the anchorage zone. The variation of impedance responses is estimated using the RMSD (root-mean-square-deviation) damage metric to quantify the sensitivity of the signals to inner damaged concrete. Lastly, a novel PZT skin, which can measure impedance signatures in predetermined frequency ranges, is designed for the anchorage zone to sensitively monitor the EM impedance signals of the inner damaged concrete. The feasibility of the proposed method is numerically evaluated for a series of damage cases of the anchorage zone. The results reveal that the proposed impedance-based method is promising for monitoring inner damaged concrete in anchorage zones.

Compressive behavior of reinforced concrete columns confined by multi-spiral hoops

  • Chen, Y.;Feng, J.;Yin, S.
    • Computers and Concrete
    • /
    • v.9 no.5
    • /
    • pp.341-355
    • /
    • 2012
  • Numerical studies are performed to predict the stress-strain behavior of rectangular RC columns confined by multi-spiral hoops under axial and eccentric compressions. Using the commercial finite element package ABAQUS, the Drucker-Prager criterion and the yield surface are adopted for damaged plasticity concrete. The proposed finite element models are compared with the published experimental data. Parametric studies on concrete grades, confinement arrangement, diameter and spacing of hoops and eccentricity of load are followed. Numerical results have shown good agreements with experimental values, and indicated a proper constitutive law and model for concrete. Cross-sectional areas and spacing of the hoops have significant effect on the bearing capacity. It can be concluded that rectangular RC columns confined by multi-spiral hoops show better performance than the conventional ones.

Fracture properties of concrete using damaged plasticity model -A parametric study

  • Kalyana Rama, J.S.;Chauhan, D.R.;Sivakumar, M.V.N;Vasan, A.;Murthy, A. Ramachandra
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.59-69
    • /
    • 2017
  • The field of fracture mechanics has gained significance because of its ability to address the behaviour of cracks. Predicting the fracture properties of concrete based on experimental investigations is a challenge considering the quasi-brittle nature of concrete. So, there is a need for developing a standard numerical tool which predicts the fracture energy of concrete which is at par with experimental results. The present study is an attempt to evaluate the fracture energy and characteristic length for different grades of concrete using Concrete Damage Plasticity (CDP) model. Indian Standard and EUROCODE are used for the basic input parameters of concrete. Numerical evaluation is done using Finite Element Analysis Software ABAQUS/CAE. Hsu & Hsu and Saenz stress-strain models are adopted for the current study. Mesh sensitivity analysis is also carried to study the influence of type and size of elements on the overall accuracy of the solution. Different input parameters like dilatation angle, eccentricity are varied and their effect on fracture properties is addressed. The results indicated that the fracture properties of concrete for various grades can be accurately predicted without laboratory tests using CDP model.

Finite element modelling of GFRP reinforced concrete beams

  • Stoner, Joseph G.;Polak, Maria Anna
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.369-382
    • /
    • 2020
  • This paper presents a discussion of the Finite Element Analysis (FEA) when applied for the analysis of concrete elements reinforced with glass fibre reinforced polymer (GFRP) bars. The purpose of such nonlinear FEA model development is to create a tool that can be used for numerical parametric studies which can be used to extend the existing (and limited) experiment database. The presented research focuses on the numerical analyses of concrete beams reinforced with GFRP longitudinal and shear reinforcements. FEA of concrete members reinforced with linear elastic brittle reinforcements (like GFRP) presents unique challenges when compared to the analysis of members reinforced with plastic (steel) reinforcements, which are discussed in the paper. Specifically, the behaviour and failure of GFRP reinforced members are strongly influenced by the compressive response of concrete and thus modelling of concrete behaviour is essential for proper analysis. FEA was performed using the commercial software ABAQUS. A damaged-plasticity model was utilized to simulate the concrete behaviour. The influence of tension, compression, dilatancy, mesh, and reinforcement modelling was studied to replicate experimental test data of beams previously tested at the University of Waterloo, Canada. Recommendations for the finite element modelling of beams reinforced with GFRP longitudinal and shear reinforcements are offered. The knowledge gained from this research allows for the development of a rational methodology for modelling GFRP reinforced concrete beams, which subsequently can be used for extensive parametric studies and the formation of informed recommendations to design standards.

FE Analysis for 1/3-scaled RC Building Structure under Biaxial Earthquake Loading

  • Lee, Joo-Beom;Rhee, In-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.567-568
    • /
    • 2009
  • The CAMUS 2000-1 experimental program were performed in France to investigate of the 1/3-scaled reinforced concrete bearing walls behavior on the shaking table under biaxial earthquake loading. The nonlinear 3D finite element analysis of push over test and linear dynamic analysis under biaxial earthquake loading are investigated with the concrete damaged plasticity model using ABAQUS.

  • PDF

Inelastic Stress Analysis of 1/4 Scale Prestressed Concrete Containment Vessel Model (프리스트레스 콘크리트 격납건물 1/4 축소모델의 비탄성응력해석)

  • 이홍표;전영선;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.301-308
    • /
    • 2004
  • The present study mainly focuses on the inelastic stress analysis of the 1/4 scale prestressed concrete containment vessel model(PCCV) under internal pressure and evaluates not only failure mode but also ultimate pressure capacity of the PCCV. Inelastic analysis is carried out 2D axisymmertic FE model and 3D FE model using four concrete material models which are Drucker-Prager Model, Chen-Chen Model, Damaged Plasticity Model and Menetrey-Willam Model. The uplift phenomenon of the basemat is considered in the 2D axisymmetric FE models. It is found from the 2D axisymmetric analysis results that both of Drucker-Prager model and Damaged Plasticity Model have a good performance and the uplift of the basemat is too small to influence on the global behavior of the PCCV. The FE analysis results on the ultimate pressure and failure mode have a good agreement with experimental results.

  • PDF

Influence of Various Parameter for Nonlinear Finite Element Analysis of FRP-Concrete Composite Beam Using Concrete Damaged Plasticity Model (콘크리트 손상 소성모델을 이용한 FRP-콘크리트 합성보의 비선형 유한요소해석에서 여러 변수들의 영향)

  • Yoo, Seung-Woon;Kang, Ga-Ram
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.697-703
    • /
    • 2017
  • This paper examines the flexure behavior of FRP-concrete composite structure that can replace conventional reinforced concrete structure types. In order to investigate the structural performance and behavioral characteristics in numerical analysis means, ABAQUS, a general purpose finite element analysis program, was utilized for nonlinear finite element analysis, and the various variables and their influences were analyzed and compared with experimental results to suggest values optimized to this composite structure. The concrete damage plasticity model and Euro code for concrete were used. In the implicit finite element analysis, the convergence was ambiguous when geometrical and material nonlinearity were large, so the explicit finite element analysis used in this study was deemed to be appropriate. From the comparison with the experiment about concrete damaged plasticity model, 20mm for the mesh size, $30^{\circ}$ for the dilation angle, $100Nmm/mm^2$ for the value of fracture energy, 0.667 for Kc value, and the consideration of damage parameter were suggested believed to be appropriate. The numerical model suggested in this study was able to imitate the ultimate load and cracking pattern very well; therefore, it is expected to be utilized in research of various new material composite structures.

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.