Acknowledgement
Supported by : National Natural Science Foundation of China, Chinese Scholarship Council
References
- Aifantis, E.C. (1984), "On the microstructural origin of certain inelastic models", J. Eng. Mater. Technol., 106(4), 326-330. https://doi.org/10.1115/1.3225725
- Al-Rub, R.K.A. and Voyiadjis, G.Z. (2009), "Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture: computational aspects and applications", Int. J. Damage Mech., 18(2), 115-154. https://doi.org/10.1177/1056789508097541
- Anitescu, C., Jia, Y., Zhang, Y.J. and Rabczuk, T. (2015), "An isogeometric collocation method using superconvergent points", Comput. Meth. Appl. Mech. Eng., 284, 1073-1097. https://doi.org/10.1016/j.cma.2014.11.038
- Areias, P., Msekh, M.A. and Rabczuk, T. (2016a), "Damage and fracture algorithm using the screened Poisson equation and local remeshing", Eng. Fract. Mech., 158, 116-143. https://doi.org/10.1016/j.engfracmech.2015.10.042
- Areias, P., Rabczuk, T. and Camanho, P.P. (2013a), "Initially rigid cohesive laws and fracture based on edge rotations", Comput. Mech., 52(4), 931-947. https://doi.org/10.1007/s00466-013-0855-6
- Areias, P., Rabczuk, T. and Camanho, P.P. (2014), "Finite strain fracture of 2D problems with injected anisotropic softening elements", Theor. Appl. Fract. Mech., 72, 50-63. https://doi.org/10.1016/j.tafmec.2014.06.006
- Areias, P., Rabczuk, T. and Dias-Da-Costa, D. (2013b), "Elementwise fracture algorithm based on rotation of edges", Eng. Fract. Mech., 110(3), 113-137. https://doi.org/10.1016/j.engfracmech.2013.06.006
- Areias, P., Rabczuk, T. and Sa, J.C.D. (2016b), "A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement", Comput. Mech., 1-16.
- Areias, P., Reinoso, J., Camanho, P. and Rabczuk, T. (2015), "A constitutive-based element-by-element crack propagation algorithm with local mesh refinement", Comput. Mech., 56(2), 1-25. https://doi.org/10.1007/s00466-015-1150-5
- Arrea, M. and Ingraffea, A.R. (1982), "Mixed-mode crack propagation in mortar and concrete", Department of Structural Engineering, Cornell University, Ithaca, NY.
- Bazant, Z.P. (1991), "Why continuum damage is nonlocal: micromechanics arguments", J. Eng. Mech., 117(5), 1070-1087. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1070)
- Bazant, Z.P. and Jirasek, M. (2002), "Nonlocal integral formulations of plasticity and damage: survey of progress", J. Eng. Mech., 128(11), 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
- Bazant, Z.P. and Pijaudier-Cabot, G. (1988), "Nonlocal continuum damage, localization instability and convergence", J. Appl. Mech., 55(2), 287-293. https://doi.org/10.1115/1.3173674
- Bazant, Z.P. and Pijaudier-Cabot, G. (1989), "Measurement of characteristic length of nonlocal continuum", J. Eng. Mech., 115(4), 755-767. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:4(755)
- Bazant, Z.P., Belytschko, T.B. and Chang, T.P. (1984), "Continuum theory for strain-softening", J. Eng. Mech., 110(12), 1666-1692. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1666)
- Bazilevs, Y., Calo, V.M., Hughes, T.J.R. and Zhang, Y. (2008), "Isogeometric fluid-structure interaction: theory, algorithms, and computations", Comput. Mech., 43(1), 3-37. https://doi.org/10.1007/s00466-008-0315-x
- Bocca, P., Carpinteri, A. and Valente, S. (1990), "Size effects in the mixed mode crack propagation: softening and snap-back analysis", Eng. Fract. Mech., 35(1-3), 159-170. https://doi.org/10.1016/0013-7944(90)90193-K
- Borden, M.J., Hughes, T.J.R., Landis, C.M. and Verhoosel, C.V. (2014), "A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework", Comput. Meth. Appl. Mech. Eng., 273(5), 100-118. https://doi.org/10.1016/j.cma.2014.01.016
- Bui, T.Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.T., Saitoh, T. and Lei, J. (2016), "Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites", Mech. Mater., 97, 135-163. https://doi.org/10.1016/j.mechmat.2016.03.001
- Chen, A.C.T. and Chen, W.F. (1975), "Constitutive relations for concrete", J. Eng. Mech., 101, Proc. Paper 11529.
- Cottrell, J.A., Reali, A., Bazilevs, Y. and Hughes, T.J.R. (2006), "Isogeometric analysis of structural vibrations", Comput. Meth. Appl. Mech. Eng., 195(41-43), 5257-5296. https://doi.org/10.1016/j.cma.2005.09.027
- Darwin, D. and Pecknold, D.A. (1977), "Nonlinear biaxial stressstrain law for concrete", J. Eng. Mech., 103(EM2), 12839.
- de Borst, R. and Pamin, J. (1996), "Some novel developments in finite element procedures for gradient-dependent plasticity", Int. J. Numer. Meth. Eng., 39(14), 2477-2505. https://doi.org/10.1002/(SICI)1097-0207(19960730)39:14<2477::AID-NME962>3.0.CO;2-E
- de Borst, R., Benallal, A. and Heeres, O.M. (1996), "A gradientenhanced damage approach to fracture", Le Journal de Physique IV, 06(C6), 491-502.
- de Borst, R., Hughes, T.J.R., Scott, M.A. and Verhoosel, C.V. (2011), "Isogeometric failure analysis", Multiscale and Multiphysics Processes in Geomechanics, Springer, 113-116.
- Dorgan, R.J. and Voyiadjis, G.Z. (2006), "A mixed finite element implementation of a gradient-enhanced coupled damageplasticity model", Int. J. Damage Mech., 15(3), 201-235. https://doi.org/10.1177/1056789506060740
- Elwi, A.A. and Murray, D.W. (1979), "A 3D hypoelastic concrete constitutive relationship", J. Eng. Mech. Div., 105(4), 623-641. https://doi.org/10.1061/JMCEA3.0002510
- Engelen, R.A.B., Geers, M.G.D. and Baaijens, F.P.T. (2003), "Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour", Int. J. Plast., 19(4), 403-433. https://doi.org/10.1016/S0749-6419(01)00042-0
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Feist., C. and Hofstetter, G. (2007), "Validation of 3d crack propagation in plain concrete. Part I: Experimental investigation - the pct3d test", Comput. Concrete, 4(1), 49-66. https://doi.org/10.12989/cac.2007.4.1.049
- Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J. Proc., 82(3), 310-323.
- Grassl, P. and Jirasek, M. (2006a), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
- Grassl, P. and Jirasek, M. (2006b), "Plastic model with non-local damage applied to concrete", Int. J. Numer. Anal. Meth. Geomech., 30(1), 71-90. https://doi.org/10.1002/nag.479
- Gutierrez, M.A. (2004), "Energy release control for numerical simulations of failure in quasi-brittle solids", Commun. Numer. Meth. Eng., 20(1), 19-29. https://doi.org/10.1002/cnm.649
- Han, D.J. and Chen, W.F. (1985), "A nonuniform hardening plasticity model for concrete materials", Mech. Mater., 4(3), 283-302. https://doi.org/10.1016/0167-6636(85)90025-0
- Hossain, K.M.A. and Olufemi, O.O. (2004), "Computational optimization of a concrete model to simulate membrane action in RC slabs", Comput. Concrete, 1(3), 325-354. https://doi.org/10.12989/cac.2004.1.3.325
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194(39-41), 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Jelic., I., Pavlovic, M.N. and Kotsovos, M.D. (2004). "Performance of structural-concrete members under sequential loading and exhibiting points of inflection", Comput. Concrete, 1(1), 99-113. https://doi.org/10.12989/cac.2004.1.1.099
- Jia, Y., Anitescu, C., Ghorashi, S.S. and Rabczuk, T. (2015), "Extended isogeometric analysis for material interface problems", IMA J. Appl. Math., 80(3), 608-633.. https://doi.org/10.1093/imamat/hxu004
- Jirasek, M. (1998), "Nonlocal models for damage and fracture: comparison of approaches", Int. J. Solid. Struct., 35(31), 4133-4145. https://doi.org/10.1016/S0020-7683(97)00306-5
- Ju, J.W. (1989), "On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects", Int. J. Solid. Struct., 25(7), 803-833. https://doi.org/10.1016/0020-7683(89)90015-2
- Karsan, I.D. and Jirsa, J.O. (1969), "Behavior of concrete under compressive loadings", J. Struct. Div., 95(12), 2543-2563 https://doi.org/10.1061/JSDEAG.0002424
- Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2
- Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI J. Proc., 66(8), 656-666.
- Lee, J. and Fenves, G. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- Loland, K.E. (1980), "Continuous damage model for loadresponse estimation of concrete", Cement Concrete Res., 10(3), 395-402. https://doi.org/10.1016/0008-8846(80)90115-5
- Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plasticdamage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
- Malvar, L.J. and Warren, G.E. (1988), "Fracture energy for threepoint-bend tests on single-edge-notched beams", Exp. Mech., 28(3), 266-272. https://doi.org/10.1007/BF02329022
- Mazars, J. and Pijaudier-Cabot, G. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
- Miehe, C., Welschinger, F. and Hofacker, M. (2010), "Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations", Int. J. Numer. Meth. Eng., 83(10), 1273-1311. https://doi.org/10.1002/nme.2861
- Nguyen, V.P., Anitescu, C., Bordas, S.P.A. and Rabczuk, T. (2015), "Isogeometric analysis: An overview and computer implementation aspects", Math. Comput. Simul., 117, 89-116. https://doi.org/10.1016/j.matcom.2015.05.008
- Ozbolt, J., Kozar, I. and Periskic, G. (2007), "Three-dimensional FE analysis of headed stud anchors exposed to fire", Comput. Concrete, 2(4), 249-266. https://doi.org/10.12989/cac.2005.2.4.249
- Pamin, J.K. (1994), "Gradient-dependent plasticity in numerical simulation of localization phenomena", TU Delft, Delft University of Technology.
- Papadakis., V.G., Efstathiou., M.P. and Apostolopoulos., C.A. (2007), "I Computer-aided approach of parameters influencing concrete service life and field validation", Comput. Concrete, 4(1), 1-18. https://doi.org/10.12989/cac.2007.4.1.001
- Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M. and de Vree, J.H.P. (1996a), "Gradient enhanced damage for quasi-brittle materials", Int. J. Numer. Meth. Eng., 39(19), 3391-3403. https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
- Peerlings, R.H.J., De Borst, R., Brekelmans, W.A.M., De Vree, J.H.P. and Spee, I. (1996b), "Some observations on localisation in non-local and gradient damage models", Eur. J. Mech. A: Solid., 15(6), 937-953.
- Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", J. Eng. Mech., 113(10), 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
- Poh, L.H. and Swaddiwudhipong, S. (2009), "Over-nonlocal gradient enhanced plastic-damage model for concrete", Int. J. Solid. Struct., 46(25), 4369-4378. https://doi.org/10.1016/j.ijsolstr.2009.08.025
- Rabczuk, T. and Belytschko, T. (2007), "A three-dimensional large deformation meshfree method for arbitrary evolving cracks", Comput. Meth. Appl. Mech. Eng., 196(29-30), 2777-2799. https://doi.org/10.1016/j.cma.2006.06.020
- Rabczuk, T. and Eibl, J. (2003), "Simulation of high velocity concrete fragmentation using SPH/MLSPH", Int. J. Numer. Meth. Eng., 56(10), 1421-1444. https://doi.org/10.1002/nme.617
- Rabczuk, T. and Eibl, J. (2006), "Modelling dynamic failure of concrete with meshfree methods", Int. J. Impact Eng., 32(11), 1878-1897. https://doi.org/10.1016/j.ijimpeng.2005.02.008
- Rabczuk, T., Akkermann, J. and Eibl, J. (2005), "A numerical model for reinforced concrete structures", Int. J. Solid. Struct., 42(5), 1327-1354. https://doi.org/10.1016/j.ijsolstr.2004.07.019
- Rots, J.G., Nauta, P.G., Kuster, G.M.A. and Blaauwendraad, J. (1985), "Smeared crack approach and fracture localization in concrete", Heron, 30(1), 1985.
- Saritas, A. and Filippou, F.C. (2009), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Struct., 31(10), 2327-2336. https://doi.org/10.1016/j.engstruct.2009.05.005
- Simo, J.C. and Ju, J.W. (1987a), "Strain- and stress-based continuum damage models - I. Formulation", Int. J. Solid. Struct., 23(7), 821-840. https://doi.org/10.1016/0020-7683(87)90083-7
- Simo, J.C. and Ju, J.W. (1987b), "Strain- and stress-based continuum damage models - II. Computational aspects", Int. J. Solid. Struct., 23(7), 841-869. https://doi.org/10.1016/0020-7683(87)90084-9
- Stroeven., P., Hu., J. and Stroeven, M. (2009), "On the usefulness of discrete element computer modeling of particle packing for material characterization in concrete technology", Comput. Concrete, 6(2), 133-153. https://doi.org/10.12989/cac.2009.6.2.133
- Thai, T.Q., Rabczuk, T., Bazilevs, Y. and Meschke, G. (2016), "A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 304, 584-604. https://doi.org/10.1016/j.cma.2016.02.031
- Verhoosel, C.V., Remmers, J.J.C. and Gutierrez, M.A. (2009), "A dissipation-based arc-length method for robust simulation of brittle and ductile failure", Int. J. Numer. Meth. Eng., 77(9), 1290-1321. https://doi.org/10.1002/nme.2447
- Verhoosel, C.V., Scott, M.A., Hughes, T.J.R. and De Borst, R. (2011), "An isogeometric analysis approach to gradient damage models", Int. J. Numer. Meth. Eng., 86(1), 115-134. https://doi.org/10.1002/nme.3150
- Vermeer, P.A. and Brinkgreve, R.B.J. (1994), "A new effective non-local strain measure for softening plasticity", Localization and Bifurcation Theory for Soils and Rocks, 89-100.
- Voyiadjis, G.Z., Taqieddin, Z.N. and Kattan, P.I. (2008), "Anisotropic damage-plasticity model for concrete", Int. J. Plast., 24(10), 1946-1965. https://doi.org/10.1016/j.ijplas.2008.04.002
- Yu, H.X. and Wu, J.H. (2009), "An elastoplastic damage constitutive model for concrete based on undamaged state", Eng. Mech., 26(10), 79-86. (in Chinese)
- Zhu, H., Wang, Q. and Zhuang, X. (2016), "A nonlinear semiconcurrent multiscale method for fractures", Int. J. Impact Eng., 87, 65-82. https://doi.org/10.1016/j.ijimpeng.2015.06.022
- Zhuang, X., Augarde, C.E. and Mathisen, K.M. (2012), "Fracture modeling using meshless methods and level sets in 3D: Framework and modeling", Int. J. Numer. Meth. Eng., 92(11), 969-998. https://doi.org/10.1002/nme.4365
- Zhuang, X., Cai, Y. and Augarde, C. (2014), "A meshless subregion radial point interpolation method for accurate calculation of crack tip fields", Theor. Appl. Fract. Mech., 69(2), 118-125. https://doi.org/10.1016/j.tafmec.2013.12.003
Cited by
- A novel approach to the complete stress strain curve for plastically damaged concrete under monotonic and cyclic loads vol.28, pp.1, 2019, https://doi.org/10.12989/cac.2021.28.1.039