• 제목/요약/키워드: concrete bridges

검색결과 1,181건 처리시간 0.027초

프리캐스트 바닥판을 사용한 강합성거더교의 장기기동 해석 (Evaluation of long term behavior of steel plate girder bridges with precast concrete decks)

  • 김수현;이종민;조선규;고동춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1326-1331
    • /
    • 2006
  • The precast concrete deck is one of suitable solutions for replacement and new construction in urban area. However, the precast concrete deck could be a weak point of the steel plate girder bridges structurally due to the connections between precast panels in the longitudinal direction. Thereafter, it is necessary for improvement of durability and load carrying capacity to introduce the prestress force in the longitudinal direction Some cracks of connections at the precast concrete deck may be occurred due to live loads, the difference of temperature and long-term effects. The shrinkage and creep of concrete may significantly affect long-term behaviors which occur tensile stresses at the precast concrete deck of steel plate girder bridges. In this study, the time-dependant analysis program has been developed to determine the initial prestress force in the longitudinal direction considering loss of stress at the precast concrete deck. Also it has been estimated the initial prestress force by construction stages and shapes of girder.

  • PDF

확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가 (Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges)

  • 김훈겸
    • 한국도로학회논문집
    • /
    • 제20권3호
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

서울시내 140개 철근콘크리트 교량의 내구성 현황 분석 (Current Status on Durability of 140 RC Bridges in Seoul Metropolitan Area)

  • 이창수;설진성;윤인석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.161-168
    • /
    • 2000
  • A series of in-situ inspection and measurements have been conducted to estimate rebar corrosion incidence of concrete bridges in Seoul metropolitan area. The objectives of this study were to obtain the fundamental data to analysis the causes of rebar corrosion and to establish the repair strategies of deteriorated concrete bridges due to corrosion. The results of this study had been analysed to identify the extent of chloride content and incidence of rebar corrosion by construction ages and by members. After measuring chloride content in concrete, it was concluded that about 76% of all tests on samples from concrete exceed the maximum acceptable limit to risk of chloride-induced corrosion. On the whole, slabs had the most highly chloride content. About 16% of the concrete bridges had a value lower than -350mV (vs. CSE), so it could concluded that the excessive chloride content and carbonation were a major causes of rebar corrosion. Concrete member which carbonation depth penetrates toward rebar was 39% among all tests on samples. The major causes of rebar corrosion were highly chloride content 50%, concrete carbonation 38%, poorly visual condition 6% and etc, 6%.

  • PDF

Numerical model for nonlinear analysis of composite concrete-steel-masonry bridges

  • Baloevic, Goran;Radnic, Jure;Grgic, Nikola;Matesan, Domagoj;Smilovic, Marija
    • Coupled systems mechanics
    • /
    • 제5권1호
    • /
    • pp.1-20
    • /
    • 2016
  • This paper firstly briefly describes developed numerical model for both static and dynamic analysis of planar structures made of concrete, steel and masonry. The model can simulate the main nonlinearity of such individual and composite structures. The model is quite simple and based on a small number of material parameters. After that, three real composite concrete-steel-masonry bridges were analyzed using the presented numerical model. It was concluded that the model can be useful in practical analysis of composite bridges. However, future verifications of the presented numerical model are desirable.

연속화된 Prestress 거더교의 거동연구 (A Study on Behaviors of Prestressed Bridge Girders Made Continuous)

  • 구민세;최인식;김진헌
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.396-403
    • /
    • 2002
  • To eliminate deck joints, continuous span bridges are becoming an attractive option. Defferent continuty methods and construction sequences have different time-dependent effects on the behavior of the bridge system. This paper is carried out to evaluate the restraint moments generated at interior span of bridges constructed with full-span prestessed concrete bridge. Especially, effects of creep and shrinkage between ACI209-95 and Eurocode 2 are compared in this paper. Time-dependent effects in prestressed concrete bridges include creep and shrinkage of concrete. Creep due to prestress makes the girders camber up and cause positive restraint moments. The most significant effect of shrinkage in continuous bridges is the differential shrinkage that occurs because of the difference in type and age of girder and deck concrete. Differential shrinkage between the precast girder and the deck typically causes negative res03int moments.

  • PDF

프리스트레스트 콘크리트 박스 거더 교량의 단면최적화 (The Section Optimization of Prestressed Concrete Box Girder Bridges)

  • 노금래;김만철;박선규;이인원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.718-723
    • /
    • 1998
  • The program which could determine cross-sectional dimension of the prestressed concrete box girder bridges at the stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost required in the design of box girder bridges and the construction with the full staging method. Objective cost function consisted of six independent variables such as height of cross-section, jacking force and thickness of web and bottom flange. The SUMT(Sequntial Unconstrained minimization Technique) was used to solve the constrained nonlinear minimization optimal problem. Using the program developed in this study, optimum design was performed for existing bridges with one cell cross section of constant depth. The result verify the compatibility of the program.

  • PDF

복부 트러스 복합교량 접합구조의 실험적 연구 (Evaluation of the Joint Design in Composite Truss Bridges)

  • 심창수;박재식;김광수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.325-328
    • /
    • 2006
  • Joint structures of composite truss bridges can have the same details for the connection between diagonal members and upper concrete slab as the connection between diagonal members and lower concrete slab. Adequate connection details should be decided according to design codes, constructibility, and economical evaluation. It is necessary to clarify the design check items and load transferring mechanism because combined external loads on composite truss bridges are concentrated at the joints. Joints with gusset plates and stud connectors are applied and complicated joint details may arise some problems in construction. This paper deals with experimental evaluation of the joints in composite truss bridges and proper design provisions were investigated to enhance the details. Push-out test specimens with group studs were fabricated and the effects of grouping and bent studs were studied.

  • PDF

New reliability framework for assessment of existing concrete bridge structures

  • Mahdi Ben Ftima;Bruno Massicotte;David Conciatori
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.399-409
    • /
    • 2024
  • Assessment of existing concrete bridges is a challenge for owners. It has greater economic impact when compared to designing new bridges. When using conventional linear analyses, judgment of the engineer is required to understand the behavior of redundant structures after the first element in the structural system reaches its ultimate capacity. The alternative is to use a predictive tool such as advanced nonlinear finite element analyses (ANFEA) to assess the overall structural behavior. This paper proposes a new reliability framework for the assessment of existing bridge structures using ANFEA. A general framework defined in previous works, accounting for material uncertainties and concrete model performance, is adapted to the context of the assessment of existing bridges. A "shifted" reliability problem is defined under the assumption of quasi-deterministic dead load effects. The overall exercise is viewed as a progressive pushover analysis up to structural failure, where the actual safety index is compared at each event to a target reliability index.

연속교 프리캐스트 바닥판의 교축방향 프리스트레스 설계 (Design of Longitudinal Prestress of Precast Decks in Continuous Bridges)

  • 심창수;김현호;하태열;전승민
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.406-409
    • /
    • 2006
  • Serviceability resign is required to control the cracking at the joint of precast decks having longitudinal prestress in continuous composite bridges. Especially, details of twin girder bridges are complex not only due to main reinforcements and transverse prestress for the resign of long-span concrete slabs but also due to shear pockets for obtaining the composite action. This paper suggests the design guidelines for the magnitude of the effective prestress and for the selection of filling materials and their requirements in order to use precast decks for twin-girder continuous composite bridges. The necessary initial prestress was also evaluated through the long-term behavior analysis. From the analysis, existing design examples were revised and their effectiveness was estimated. When a filling material having bonding strength higher than the requirement is used in the region of high negative moment, uniform configuration of longitudinal prestressing steels along the whole span length of continuous composite bridges can be achieved resulting in simplification of details and enhancement of the construction costs.

  • PDF

풀스팬 프리캐스트 세그먼트 교량의 해석 및 장기거동 해석 (Long Term Behavior and Analysis of Full Span Precast Segmental Bridge)

  • 오병환;채성태;정상화;박지언
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.434-441
    • /
    • 1999
  • The newly proposed Precast Segmental Mettled (PSM), which makes use of precast elements for election, is relatively new, efficient and fast mettled for the construction of prestressed box girder bridges. A precast segment of 25m long pretensioned in the fabrication yard is transported by a special trailer and a launching truss to its final position. The segments are then connected in the site by post-tensioning to make a continuous prestressed concrete box girder bridges. The purpose of this parer is to analyze and evaluate the design of precast prestressed concrete box girder bridges. The detailed analyses including time-dependent behavior of PSM bridges are conducted. The major results and findings, which have been obtained from finite element analysis of PSM bridge, are discussed in this paper and these results will be a good base for the design and analysis of a new precast bridges.

  • PDF