DOI QR코드

DOI QR Code

New reliability framework for assessment of existing concrete bridge structures

  • Mahdi Ben Ftima (Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal) ;
  • Bruno Massicotte (Department of Civil, Geological, and Mining Engineering, Polytechnique Montreal) ;
  • David Conciatori (Department of Civil and Water Engineering, Faculty of Sciences and Engineering, Laval University)
  • Received : 2023.08.05
  • Accepted : 2024.02.14
  • Published : 2024.02.25

Abstract

Assessment of existing concrete bridges is a challenge for owners. It has greater economic impact when compared to designing new bridges. When using conventional linear analyses, judgment of the engineer is required to understand the behavior of redundant structures after the first element in the structural system reaches its ultimate capacity. The alternative is to use a predictive tool such as advanced nonlinear finite element analyses (ANFEA) to assess the overall structural behavior. This paper proposes a new reliability framework for the assessment of existing bridge structures using ANFEA. A general framework defined in previous works, accounting for material uncertainties and concrete model performance, is adapted to the context of the assessment of existing bridges. A "shifted" reliability problem is defined under the assumption of quasi-deterministic dead load effects. The overall exercise is viewed as a progressive pushover analysis up to structural failure, where the actual safety index is compared at each event to a target reliability index.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support obtained from Natural Sciences and Engineering Research Council (NSERC) of Canada, the Center for Research on Concrete Infrastructures of Quebec (FRQNT-CRIB), and the Quebec Ministry of Transportation.

References

  1. AASHTO (2014), LRFD Bridge Design Specifications, Customary U.S. Units, 7th Edition, Washington DC, USA. 
  2. AASHTO (2018), Manual for Bridge Evaluation-3rd Edition, Washington DC, USA. 
  3. ACI 318-14 (2017), Building Code Requirements for Structural Concrete and Commentary, Manual of Concrete Practice, American Concrete Institute. 
  4. Allen, D.E. (1981), "Limit states design: What do we really want?", Can. J. Civil Eng., 8, 44-50. https://doi.org/10.1139/l81-006. 
  5. Allen, D.E. (1992), "Canadian highway bridge evaluation: Reliability index", Can. J. Civil Eng., 19, 987-991. https://doi.org/10.1139/l92-118. 
  6. Al-Mosawi, D., Neves, L. and Owen, J. (2022), "Reliability analysis of deteriorated post-tensioned concrete bridges: The case study of Ynys-Gwas bridge in UK", Struct., 41, 242-259. https://doi.org/10.1016/j.istruc.2022.04.094. 
  7. AS 5100.7 (2017), Bridge Design-Part 7: Bridge Assessment. 
  8. Bazant Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16, 155-177. https://doi.org/10.1007/BF02486267. 
  9. Ben Ftima, M. and Massicotte, B. (2012), "Development of a reliability framework for the use of advanced nonlinear finite elements in the design of concrete structures", ASCE J. Struct. Eng., 138(8), 1054-1064. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000538. 
  10. Ben Ftima, M. and Massicotte, B. (2015a), "Utilization of nonlinear finite elements for the design and assessment of large concrete structures, Part I: Calibration and validation", ASCE J. Struct. Eng., 141(9), 04014218. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001160. 
  11. Ben Ftima, M. and Massicotte, B. (2015b), "Utilization of nonlinear finite elements for the design and assessment of large concrete structures, Part II: Applications", ASCE J. Struct. Eng., 141, 04014218. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001178. 
  12. Buckland, P.G. and Bartlett, F.M. (1992), "Canadian highway bridge evaluation: a general overview of Clause 12 of CSA Standard CAN/CSA-S6-88", Can. J. Civil Eng., 19(6), 981-986. https://doi.org/10.1139/l92-117. 
  13. Castaldo, P., Gino, D. and Giuseppe, M. (2019), "Safety formats for non-linear finite element analysis of reinforced concrete structures: Discussion, comparison and proposals", Eng. Struct., 193, 136-153. https://doi.org/10.1016/j.engstruct.2019.05.029. 
  14. Cervenka, V. (2008), Global Safety Format for Nonlinear Calculation of Reinforced Concrete, Beton und Stahlbetonbau, 103, Special Edition, 37-42.  https://doi.org/10.1002/best.200810117
  15. CSA-A23.3 2019 (2019a), Design of Concrete Structures-Canadian Standards Association, Toronto, Canada. 
  16. CSA-S6 2019 (2019b), Canadian Highway Bridge Design Code-Canadian Standards Association, Toronto, Canada. 
  17. CSA-S6 2019 (2019c), CSA S6.1 Commentary on S6-19, Canadian Highway Bridge Design Code-Canadian Standards Association, Toronto, Canada. 
  18. Frangopol, D.M. and Nakib, R. (1991), "Redundancy in highway bridges", Eng. J., 28, 45-50.  https://doi.org/10.62913/engj.v28i1.566
  19. Garakaninezhad, A. and Bastami, M. (2019), "An evolutionary approach for structural reliability", Struct. Eng. Mech., 71(4), 329-339. https://doi.org/10.12989/sem.2019.71.4.329. 
  20. Ghosn, M. and Moses, F. (1998), "Redundancy in highway bridge superstructures", NCHRP Report #406. 
  21. Ghosn, M., Moses, F. and Frangopol, D.M. (2010), "Redundancy and robustness of highway bridge superstructures and substructures", Struct. Infrastr. Eng., 6, 257-278.  https://doi.org/10.1080/15732470802664498
  22. Hibbitt, H.D., Karlson, B.I. and Sorensen, E.P. (2014), ABAQUS Version 6.14, Finite Element Program, Hibbitt, Karlson and Sorensen, Providence, R.I. 
  23. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7. 
  24. Hunter, M., Ferche, A. and Vecchio, F. (2021), "Stochastic finite element analysis of shear critical concrete structures", ACI Struct. J., 118, 71-83. https://doi.org/10.14359/51730524. 
  25. International Organization for Standardization, ISO (2015), General Principles on Reliability for Structures, ISO 2394. 
  26. Jamail, S., Chan, T., Ngyen, A. and Thambiratnam, P. (2019), "Reliability-based load-carrying capacity assessment of bridges using structural health monitoring and nonlinear analysis", Struct. Hlth. Monit., 18, 20-34. https://doi.org/10.1177/1475921718808462 
  27. Kreuzer, H. and Leger, P. (2013), "The adjustable factor of safety: A reliability-based approach to assess the factor of safety for concrete dams", Int. J. Hydrop. Dam., 20, 67-80. 
  28. Liu, M., Frangopol, D.M. and Kim, S. (2009), "Bridge safety evaluation based on monitored live load effects", ASCE J. Bridge Eng., 14, 257-269. https://doi.org/10.1061/(ASCE)1084-0702(2009)14:4(257). 
  29. Liu, M., Ghosn, M. and Moses, F. (2001), "Redundancy in highway bridge substructures", NCHRP Report #458. 
  30. Melchers, R.E. (2001), Structural Reliability Analysis and Prediction, 2nd Edition, John Wiley & Sons, Chichester. 
  31. Mirza, S.A. and MacGregor, J.G. (1982), "Probabilistic study of strength of reinforced concrete members", Can. J. Civil Eng., 9, 431-448. https://doi.org/10.1139/l82-053. 
  32. Ni, P., Li, J., Hao, H., Yan, W., Du, X. and Zhou, H. (2020). "Reliability analysis and design optimization of nonlinear structures", Reliab. Eng. Syst. Saf., 198, 106860. https://doi.org/10.1016/j.ress.2020.106860. 
  33. Nowak, A.S. and Szerszen, M. (2000), "Structural reliability as applied to highway bridges", Progr. Struct. Eng. Mater., 2, 218-224. https://doi.org/10.1002/1528-2716(200004/06)2:2<218::AID-PSE27>3.0.CO;2-8. 
  34. Pimentel, M., Bruhwiler, E. and Figueiras, J. (2014), "Safety examination of existing concrete structures using the global resistance factor concept", Eng. Struct., 70, 130-143. https://doi.org/10.1016/j.engstruct.2014.04.005. 
  35. Rosenblueth, E. (1975), "Point estimates for probability moments", Proc. Nat. Acad. Sci., 72(10), 3812-3814. https://doi.org/10.1073/pnas.72.10.3812. 
  36. Sakka, Z., Assakkaf, I. and Qazweeni, J. (2018), "Reliability-based assessment of damaged concrete buildings", Struct. Eng. Mech., 65, 751-760. https://doi.org/10.12989/sem.2018.65.6.751. 
  37. Schlune, H., Plos, M. and Gylltoft, K. (2012), "Safety formats for non-linear analysis of concrete structures", Mag. Concrete Res., 64, 563-574. https://doi.org/10.1680/macr.11.00046. 
  38. Slobbe, A., Arpad, R., Allaix, D. and van Vliet, A. (2020), "On the value of a reliability-based nonlinear finite element analysis approach in the assessment of concrete structures", Struct. Concrete, 21, 32-47. https://doi.org/10.1002/suco.201800344. 
  39. Steenbergen, R.D.J.M. and Vrouwenvelder, A.C.W.M. (2010), "Safety philosophy for existing structures and partial factors for traffic loads on bridges", Heron, 55, 123-140. 
  40. Strauss, A., Novak, D., Lehky, D., Vorechovsky, M., Cervenka, V. and Ulrich, S. (2019), "Safety analysis and reliability assessment of engineering structures- the success story of SARA", Struct. Concrete, 3, 38-47. https://doi.org/10.1002/cepa.986. 
  41. Zhang, M., Song, H., Lim, S., Akiyama, M, and Frangopol, D. (2019), "Reliability estimation of corroded RC structures based on spatial variability using experimental evidence, probabilistic analysis and finite element method", Eng. Struct., 192, https://doi.org/10.1016/j.engstruct.2019.04.085.