Acknowledgement
Supported by : Ministry of Science, Education and Sport of Croatia
References
- Abdessemed, M., Kenai, S., Bali, A. and Kibboua, A. (2011), "Dynamic analysis of a bridge repaired by CFRP: Experimental and numerical modelling", Constr. Build. Mater., 25(3), 1270-1276. https://doi.org/10.1016/j.conbuildmat.2010.09.025
- Baloevic, G., Radnic, J. and Harapin, A. (2013), "Numerical dynamic tests of masonry-infilled RC frames", Eng. Struct., 50, 43-55. https://doi.org/10.1016/j.engstruct.2012.11.034
- Berchio, E., Ferrero, A. and Gazzola, F. (2016), "Structural instability of nonlinear plates modelling suspension bridges: Mathematical answers to some long-standing questions", Nonlinear Anal. Real World Applications, 28, 91-125. https://doi.org/10.1016/j.nonrwa.2015.09.005
- Brownjohn, J.M.W. and Xia, P.Q. (2000), "Dynamic assessment of curved cable-stayed bridge by model updating", J. Struct. Eng. New York, 126(2), 252-260.
- Chung, W. and Sotelino, E.D. (2006), "Three-dimensional finite element modeling of composite girder bridges", Eng. Struct., 28(1), 63-71. https://doi.org/10.1016/j.engstruct.2005.05.019
- Cunha, A., Caetano, E. and Delgado, R. (2001), "Dynamic tests on large cable-stayed bridge", J. Bridge Eng., 6 (1), 54-62. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(54)
- Fu, C. (2016), "Dynamic behavior of a simply supported bridge with a switching crack subjected to seismic excitations and moving trains", Eng. Struct., 110, 59-69. https://doi.org/10.1016/j.engstruct.2015.11.055
- HRN EN 1992-2:2013. Eurocode 2: Design of concrete structures--Part 2: Concrete bridges--Design and detailing rules.
- HRN EN 1993-2:2008. Eurocode 3: Design of steel structures--Part 2: Steel bridges.
- HRN EN 1994-2:2012. Eurocode 4: Design of composite steel and concrete structures--Part 2: General rules and rules for bridges.
- HRN EN 1998-2:2011. Eurocode 8: Design of structures for earthquake resistance--Part 2: Bridges.
- Hughes, T.J.R., Pister, K.S. and Taylor, R.L. (1979), "Implicit-explicit finite elements in nonlinear transient analysis", Comput. Method. Appl. M., 17-18, 159-182. https://doi.org/10.1016/0045-7825(79)90086-0
- Krstevska, L., Kustura, M. and Tashkov, Lj. (2008), "Experimental dynamic testing of the Old Bridge in Mostar", Proceedings of the International Scientific Symposium Modeling of Structures, Mostar, Bosnia and Herzegovina, November.
- Li, Y., Cai, C.S., Liu, Y., Chen, Y. and Liu, J. (2016), "Dynamic analysis of a large span specially shaped hybrid girder bridge with concrete-filled steel tube arches", Eng. Struct., 106, 243-260. https://doi.org/10.1016/j.engstruct.2015.10.026
- Radnic, J., Baloevic, G., Matesan, D. and Smilovic, M. (2013), "On a numerical model for static and dynamic analysis of in-plane masonry infilled steel frames", Mater. Sci. Eng. Technol., 44(5), 423-430.
- Radnic, J., Harapin, A., Matesan, D., Trogrlic, B., Smilovic, M., Grgic, N. and Baloevic, G. (2011), "Numerical model for analysis of masonry structure", Gradjevinar, 63(6), 529-546.
- Radnic, J., Harapin, A., Smilovic, M., Grgic, N. and Glibic, M. (2012), "Static and dynamic analysis of the old stone bridge in Mostar", Gradevinar, 64(8), 655-665.
- Song, M.K., Noh, H.C. and Choi, C.K. (2003), "A new three-dimensional finite element analysis model of high-speed train-bridge interactions", Eng. Struct., 25(13), 1611-1626. https://doi.org/10.1016/S0141-0296(03)00133-0
- Wang, W., Deng, L. and Shao, X. (2016), "Number of stress cycles for fatigue design of simply-supported steel I-girder bridges considering the dynamic effect of vehicle loading", Eng. Struct., 110, 70-78. https://doi.org/10.1016/j.engstruct.2015.11.054
- Yang, Y.B. and Yau, J.D. (1997), "Vehicle-bridge interaction element for dynamic analysis", J. Struct. Eng., 123(11), 1512-1518. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1512)
Cited by
- Inclined cable-systems in suspended bridges for restricting dynamic deformations vol.6, pp.4, 2016, https://doi.org/10.12989/csm.2017.6.4.377
- Probabilistic seismic assessment of RC box-girder bridges retrofitted with FRP and steel jacketing vol.9, pp.4, 2016, https://doi.org/10.12989/csm.2020.9.4.359