• 제목/요약/키워드: concepts optimization

검색결과 119건 처리시간 0.02초

A hybrid CSS and PSO algorithm for optimal design of structures

  • Kaveh, A.;Talatahari, S.
    • Structural Engineering and Mechanics
    • /
    • 제42권6호
    • /
    • pp.783-797
    • /
    • 2012
  • A new hybrid meta-heuristic optimization algorithm is presented for design of structures. The algorithm is based on the concepts of the charged system search (CSS) and the particle swarm optimization (PSO) algorithms. The CSS is inspired by the Coulomb and Gauss's laws of electrostatics in physics, the governing laws of motion from the Newtonian mechanics, and the PSO is based on the swarm intelligence and utilizes the information of the best fitness historically achieved by the particles (local best) and by the best among all the particles (global best). In the new hybrid algorithm, each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Three different types of structures are optimized as the numerical examples with the new algorithm. Comparison of the results of the hybrid algorithm with those of other meta-heuristic algorithms proves the robustness of the new algorithm.

회전강성 최소화를 위한 절연요소의 형상 설계 (Shape Design for Viscoelastic Vibration Isolators to Minimize Rotational Stiffness)

  • 오환엽;김광준
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1250-1255
    • /
    • 2008
  • Design of shape fur visco-elastic vibration isolation elements, which are very cost-effective and so popular in many applications is fi?equently based on experiences, intuitions, or trial and errors. Such traditions in shape design make it difficult for drastic changes or new concepts to come out. In this paper, both topological method and shape optimization method are combined together to find out a most desirable isolator shape efficiently by using two commercial engineering programs, ABAQUS and MATLAB. The procedure is divided into two steps. At the first step, a topology optimization method is employed to find an initial shape, where density of either 0 or 1 for finite elements is used fur physical realizability. At the second step, based on the initial shape, finer tuning of the shape is done by boundary movement method. An illustration of the procedure is presented fur a mount of an air-conditioner compressor system and the effectiveness is discussed.

위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계 (SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE)

  • 양설민;백석흠;강상모
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.

박판 구조물의 방사 소음에 대한 크기설계 민감도 해석 및 최적 설계 (Sizing Design Sensitivity Analysis and Optimization of Radiated Noise from a Thin-body)

  • 이제원;왕세명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1038-1043
    • /
    • 2003
  • There are many industrial applications including thin-body structures such as fins. For the numerical modeling of radiation of sound from thin bodies, the conventional boundary element method (BEM) using the Helmholtz integral equation fails to yield a reliable solution. Therefore, many researchers have tried to solve the thin-body acoustic problems. In the area of the design sensitivity analysis (DSA) and optimization methods, however, there has been just a few study reported. Especially fur the thin-body acoustics, however, no further study in the DSA and optimization fields has been reported. In this research, the normal derivative integral equation is adopted as an analysis formulation in the thin-body acoustics, and then used for the sizing DSA and optimization. Since the gradient-based method is used for the optimization, it is important to have accurate gradients (design sensitivities) of the objective function and constraints with respect to the design variables. The DSA formulations are derived through chain-ruled derivatives using the finite element method (FEM) and BEM by using the direct differentiation and continuum variation concepts. The proposed approaches are implemented and validated using a numerical example.

  • PDF

Theoretical and experimental study of robustness based design of single-layer grid structures

  • Wu, Hui;Zhang, Cheng;Gao, Bo-Qing;Ye, Jun
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.19-33
    • /
    • 2014
  • Structural robustness refers to the ability of a structure to avoid disproportionate consequences to the original cause. Currently attentions focus on the concepts of structural robustness, and discussions on methods of robustness based structural design are rare. Firstly, taking basis in robust $H_{\infty}$ control theory, structural robustness is assessed by $H_{\infty}$ norm of the system transfer function. Then using the SIMP material model, robustness based design of grid structures is formulated as a continuum topology optimization problem, where the relative density of each element and structural robustness are considered as the design variable and the optimization objective respectively. Generalized elitist genetic algorithm is used to solve the optimization problem. As examples, robustness configurations of plane stress model and the rectangular hyperbolic shell model were obtained by robustness based structural design. Finally, two models of single-layer grid structures were designed by conventional and robustness based method respectively. Different interference scenarios were simulated by static and impact experiments, and robustness of the models were analyzed and compared. The results show that the $H_{\infty}$ structural robustness index can indicate whether the structural response is proportional to the original cause. Robustness based structural design improves structural robustness effectively, and it can provide a conceptual design in the initial stage of structural design.

유전자 알고리즘을 이용한 T-형 복합재료 날개의 플러터 속도 최적설계 (Optimum Design of a Composite T-tail Configuration for Maximum Flutter Speed Using Genetic Algorithm)

  • 알렉산더 바비;오세원;김동현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.173-178
    • /
    • 2005
  • In this paper, an efficient and robust analysis system for the flutter optimization of laminated composite wings has been developed using the coupled computational method based on the genetic algorithm. General three-dimensional doublet-lattice method is efficiently used to compute generalized aerodynamic forces of T-tail configuration in the frequency domain. Structural dynamic analyses of laminated composite T-tail models are conducted using finite clement method. The classical P-k flutter analysis technique is applied to effectively solve the aeroelastic governing equations in the frequency domain. Optimum design studies using genetic algorithm have been conducted in order to obtain maximum flutter stability of a composite T-tail configuration. The results show that flutter stability can be significantly increased using composite materials with proper optimum design concepts even for the same weight and shape condition. In the view point of engineering design, it is also importantly shown that the optimization of the vertical wing part is highly effective comparing to the optimization of horizontal wing part.

  • PDF

How to Use an Optimization-Based Method Capable of Balancing Safety, Reliability, and Weight in an Aircraft Design Process

  • Johansson, Cristina;Derelov, Micael;Olvander, Johan
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.404-410
    • /
    • 2017
  • In order to help decision-makers in the early design phase to improve and make more cost-efficient system safety and reliability baselines of aircraft design concepts, a method (Multi-objective Optimization for Safety and Reliability Trade-off) that is able to handle trade-offs such as system safety, system reliability, and other characteristics, for instance weight and cost, is used. Multi-objective Optimization for Safety and Reliability Trade-off has been developed and implemented at SAAB Aeronautics. The aim of this paper is to demonstrate how the implemented method might work to aid the selection of optimal design alternatives. The method is a three-step method: step 1 involves the modelling of each considered target, step 2 is optimization, and step 3 is the visualization and selection of results (results processing). The analysis is performed within Architecture Design and Preliminary Design steps, according to the company's Product Development Process. The lessons learned regarding the use of the implemented trade-off method in the three cases are presented. The results are a handful of solutions, a basis to aid in the selection of a design alternative. While the implementation of the trade-off method is performed for companies, there is nothing to prevent adapting this method, with minimal modifications, for use in other industrial applications.

Design and Test Results of an Actively Shielded Superconducting Magnet for Magnetic Resonance Imaging

  • Jin, Hong-Beom;Ryu, Kang-Sik;Oh, Bong-Hwan;Ryu, Kyung-Woo;Jeoun, In-Young
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.95-105
    • /
    • 1997
  • In this paper, we have studied about design and fabrication of the actively shielded superconducting MRI magnet. Nonlinear optimization methods are usually used to find optimum coil configurations. However the selection of initial coil configurations is very difficult. In case bad initial data are used, it is even impossible to find optimum coil configurations which satisfy predefined constraints. We have developed computer optimization program which consists of two steps. Initial coil configurations are easily selected through linear optimization in the first step and optimum coil configurations are found through nonlinear optimization in the second step. We have also studied about superconducting shim coils to cancel error fields caused by coil fabrication errors. Many researchers published design concepts of shim coil. However all these studies are for shim coil design using filamentary coils with single turn, Shim coils with multi-turns should be used to produce enough field strength to cancel error fields. We have developed computer program for the design of shim coils which have proper thickness and length. An actively shielded superconducting MRI magnet with a small warm bore was fabricated and four sets of superconducting shim coils were equipped. The magnetic field distributions were measured and field correction was carried out using shim coils.

  • PDF

태블로 알고리즘 기반 온톨로지 추론 엔진의 속도 향상을 위한 방법 (Methods to Reduce Execution Time of Ontology Reasoners based on Tableaux Algorithm)

  • 김제민;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권2호
    • /
    • pp.153-160
    • /
    • 2009
  • 온톨로지의 크기가 대형화됨에 따라, 온톨로지 내부 구조는 점점 복잡해지고 있다. 따라서 온톨로지 구축과정에서 발생하는 여러 가지 논리적 오류를 찾아내어 수정하는 것은 매우 어려운 작업이 되고 있다. Minerva[1]는 OWL로 작성한 온톨로지 중 논리적 오류를 갖는 개념들을 자동으로 탐지하고, 개념간의 계층 관계를 추론하기 위해 개발된 온톨로지 추론 엔진이다. Minerva를 포함한 대부분의 서술 논리 기반의 온톨로지 추론 엔진은 태블로 알고리즘(Tableau Algorithm)을 기반으로 동작한다. 태블로 알고리즘을 그대로 적용할 경우 시간 및 공간 복잡도가 상당히 높아지기 때문에 다양한 최적화 기법이 필요하다. 본 논문에서는 태블로 알고리즘을 사용하는 온톨로지 추론 엔진의 속도를 향상시키는 최적화 기법들을 제안한다. 제안한 기법들은 선행 연구로서 이미 개발된 온톨로지 추론엔진 Minerva에 적용되어 성능향상을 이끌어 내었다.

The Principle of Justifiable Granularity and an Optimization of Information Granularity Allocation as Fundamentals of Granular Computing

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • 제7권3호
    • /
    • pp.397-412
    • /
    • 2011
  • Granular Computing has emerged as a unified and coherent framework of designing, processing, and interpretation of information granules. Information granules are formalized within various frameworks such as sets (interval mathematics), fuzzy sets, rough sets, shadowed sets, probabilities (probability density functions), to name several the most visible approaches. In spite of the apparent diversity of the existing formalisms, there are some underlying commonalities articulated in terms of the fundamentals, algorithmic developments and ensuing application domains. In this study, we introduce two pivotal concepts: a principle of justifiable granularity and a method of an optimal information allocation where information granularity is regarded as an important design asset. We show that these two concepts are relevant to various formal setups of information granularity and offer constructs supporting the design of information granules and their processing. A suite of applied studies is focused on knowledge management in which case we identify several key categories of schemes present there.