References
- B. Apolloni, S. Bassis, D. Malchiodi, W. Pedrycz, "Interpolating support information granules", Neurocomputing, 71, 13-15, 2008, 2433-2445. https://doi.org/10.1016/j.neucom.2007.11.038
- A.Bargiela, W. Pedrycz, Granular Computing: An Introduction, Kluwer Academic Publishers, Dordrecht, 2003.
- A. Bargiela, W. Pedrycz (eds.), Human-Centric Information Processing Through Granular Modelling, Springer -Verlag, Heidelberg, 2009.
- A. Bargiela, W. Pedrycz, "Granular mappings", IEEE Transactions on Systems, Man, and Cybernetics-part A, 35, 2, 2005, 292-297. https://doi.org/10.1109/TSMCA.2005.843381
- A. Bargiela, W. Pedrycz, "A model of granular data: a design problem with the Tchebyschev FCM", Soft Computing, 9, 2005,155-163. https://doi.org/10.1007/s00500-003-0339-2
- A. Bargiela, W. Pedrycz, "Toward a theory of Granular Computing for human-centered information processing", IEEE Transactions on Fuzzy Systems, 16, 2, 2008, 320-330. https://doi.org/10.1109/TFUZZ.2007.905912
- J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, N. York, 1981.
- S. Calegari, D. Ciucci, "Granular computing applied to ontologies", Int. Journal of Approximate Reasoning, 51, 4, 2010, 391-409. https://doi.org/10.1016/j.ijar.2009.11.006
- K. Hirota, "Concepts of probabilistic sets", Fuzzy Sets and Systems, 5, 1, 1981, 31-46. https://doi.org/10.1016/0165-0114(81)90032-4
- K. Hirota, W. Pedrycz, "Characterization of fuzzy clustering algorithms in terms of entropy of probabilistic sets", Pattern Recognition Letters, 2, 4, 1984, 213-216. https://doi.org/10.1016/0167-8655(84)90027-8
- Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Kluwer Academic Publishers, Dordrecht, 1991.
- Z. Pawlak, "Rough sets and fuzzy sets", Fuzzy Sets and Systems, 17, 1, 1985, 99-102. https://doi.org/10.1016/S0165-0114(85)80029-4
- Z. Pawlak, "A. Skowron, Rudiments of rough sets", Information Sciences, 177, 1, 1 2007, 3-27. https://doi.org/10.1016/j.ins.2006.06.003
- Z. Pawlak, "A. Skowron, Rough sets: Some extensions", Information Sciences, 177, 1, 2007, 28-40. https://doi.org/10.1016/j.ins.2006.06.006
- W. Pedrycz, F. Gomide, Fuzzy Systems Engineering: Toward Human-Centric Computing, John Wiley, Hoboken, NJ, 2007.
- W. Pedrycz, "Shadowed sets: representing and processing fuzzy sets", IEEE Trans. on Systems, Man, and Cybernetics, Part B, 28, 1998, 103-109. https://doi.org/10.1109/3477.658584
- W. Pedrycz, M. Song, "Analytic Hierarchy Process (AHP) in group decision making and its optimization with an allocation of information granularity", IEEE Trans.on Fuzzy Systems, 2011, to appear.
- W. Pedrycz, Shadowed sets: bridging fuzzy and rough sets, In: Rough Fuzzy Hybridization. A New Trend in Decision-Making, S.K. Pal, A. Skowron, (eds.), Springer Verlag, Singapore, 1999, 179-199.
- W. Pedrycz, Interpretation of clusters in the framework of shadowed sets, Pattern Recognition Letters, 26, 15, 2005, 2439-2449. https://doi.org/10.1016/j.patrec.2005.05.001
- W. Pedrycz, K. Hirota, "A consensus-driven clustering", Pattern Recognition Letters, 29, 2008, 1333-1343. https://doi.org/10.1016/j.patrec.2008.02.015
- W. Pedrycz, P. Rai, "Collaborative clustering with the use of Fuzzy C-Means and its quantification", Fuzzy Sets and Systems, 159, 18, 2008, 2399-2427. https://doi.org/10.1016/j.fss.2007.12.030
- W. Pedrycz, "The design of cognitive maps: A study in synergy of granular computing and evolutionary optimization", Expert Systems with Applications, 37, 10, 2010, 7288-7294. https://doi.org/10.1016/j.eswa.2010.03.006
- Y. Qian, J. Liang, Y. Yao, C. Dang, "MGRS: A multi-granulation rough set", Information Sciences, 180, 6, 2010, 949-970. https://doi.org/10.1016/j.ins.2009.11.023
- T. L. Saaty, "How to handle dependence with the analytic hierarchy process", Mathematical Modelling, 9, 1987, 369-376. https://doi.org/10.1016/0270-0255(87)90494-5
- D. Slezak, "Degrees of conditional (in)dependence: A framework for approximate Bayesian networks and examples related to the rough set-based feature selection", Information Sciences, 179, 3, 2009, 197-209. https://doi.org/10.1016/j.ins.2008.09.007
- R. W. Swiniarski, A. Skowron, "Rough set methods in feature selection and recognition", Pattern Recognition Letters, 24, 6, 2003, 833-849. https://doi.org/10.1016/S0167-8655(02)00196-4
- W-Z. Wu, Y. Leung, Theory and applications of granular labeled partitions in multi-scale decision tables, Information Sciences, In Press, Available online 10 May, 2011.
- L.A. Zadeh, "Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic", Fuzzy Sets and Systems, 90, 1997, 111-117. https://doi.org/10.1016/S0165-0114(97)00077-8
- L.A. Zadeh, "From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions", IEEE Trans. on Circuits and Systems, 45, 1999, 105-119.
- X. Zhang, Y. Yao, H. Yu, "Rough implication operator based on strong topological rough algebras", Information Sciences, 180, 19, 2010, 3764-3780. https://doi.org/10.1016/j.ins.2010.05.017
Cited by
- Design of granular interval-valued information granules with the use of the principle of justifiable granularity and their applications to system modeling of higher type vol.20, pp.6, 2016, https://doi.org/10.1007/s00500-015-1904-1
- A method for constructing the Composite Indicator of business cycles based on information granulation and Dynamic Time Warping vol.101, 2016, https://doi.org/10.1016/j.knosys.2016.03.013
- Fuzzy numbers from raw discrete data using linear regression vol.233, 2013, https://doi.org/10.1016/j.ins.2013.01.023
- A triarchic theory of granular computing vol.1, pp.2, 2016, https://doi.org/10.1007/s41066-015-0011-0
- From Principal Curves to Granular Principal Curves vol.44, pp.6, 2014, https://doi.org/10.1109/TCYB.2013.2270294
- A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm vol.24, 2014, https://doi.org/10.1016/j.asoc.2014.07.019
- Development of granular models through the design of a granular output spaces vol.134, 2017, https://doi.org/10.1016/j.knosys.2017.07.030
- A neurofuzzy algorithm for learning from complex granules vol.1, pp.4, 2016, https://doi.org/10.1007/s41066-016-0018-1
- Hybrid Learning for General Type-2 TSK Fuzzy Logic Systems vol.10, pp.3, 2017, https://doi.org/10.3390/a10030099
- Granular modeling and computing approaches for intelligent analysis of non-geometric data vol.27, 2015, https://doi.org/10.1016/j.asoc.2014.08.072
- Calibrating level set approach by granular computing in computed tomography abdominal organs segmentation vol.49, 2016, https://doi.org/10.1016/j.asoc.2016.09.028
- Granular computing: from granularity optimization to multi-granularity joint problem solving vol.2, pp.3, 2017, https://doi.org/10.1007/s41066-016-0032-3
- Building consensus in group decision making with an allocation of information granularity vol.255, 2014, https://doi.org/10.1016/j.fss.2014.03.016
- Multi-attribute Group Decision-Making Method Based on Cloud Distance Operators With Linguistic Information vol.19, pp.4, 2017, https://doi.org/10.1007/s40815-016-0279-5
- Hierarchical description of uncertain information vol.268, 2014, https://doi.org/10.1016/j.ins.2014.01.028
- The uncertainty of probabilistic rough sets in multi-granulation spaces vol.77, 2016, https://doi.org/10.1016/j.ijar.2016.06.001
- Group Decision Making in Linguistic Contexts: An Information Granulation Approach vol.91, 2016, https://doi.org/10.1016/j.procs.2016.07.062
- A method based on PSO and granular computing of linguistic information to solve group decision making problems defined in heterogeneous contexts vol.230, pp.3, 2013, https://doi.org/10.1016/j.ejor.2013.04.046
- Classification of Type-2 Fuzzy Sets Represented as Sequences of Vertical Slices vol.24, pp.5, 2016, https://doi.org/10.1109/TFUZZ.2015.2500274
- Information granules in image histogram analysis 2017, https://doi.org/10.1016/j.compmedimag.2017.05.003
- Data Representation Based on Interval-Sets for Anomaly Detection in Time Series vol.6, pp.2169-3536, 2018, https://doi.org/10.1109/ACCESS.2018.2828864