• Title/Summary/Keyword: computational solutions

Search Result 1,335, Processing Time 0.022 seconds

POSITIVE SOLUTIONS TO A FOUR-POINT BOUNDARY VALUE PROBLEM OF HIGHER-ORDER DIFFERENTIAL EQUATION WITH A P-LAPLACIAN

  • Pang, Huihui;Lian, Hairong;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.59-74
    • /
    • 2010
  • In this paper, we obtain the existence of positive solutions for a quasi-linear four-point boundary value problem of higher-order differential equation. By using the fixed point index theorem and imposing some conditions on f, the existence of positive solutions to a higher-order four-point boundary value problem with a p-Laplacian is obtained.

PROPAGATION OF PHASE BOUNDARIES: EXISTENCE AND ADMISSIBILITY OF SOLUTIONS VIA FRONT TRACKING METHOD

  • Ahn, Hyeung-Won;Lee, Choon-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.491-511
    • /
    • 2006
  • The existence of the admissible solution for conservation laws of trilinear type occurring material sciences was proved by Abeyaratne and Knowles. LeFloch proved the existence of admissible solutions of conservation laws of this type via Glimm's method. In this paper we introduce a front tracking solution and prove the existence of the front tracking solution. We also investigate the admissibility of solutions via the Front Tracking Method.

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR THE SYSTEMS OF HIGHER ORDER BOUNDARY VALUE PROBLEMS ON TIME SCALES

  • Rao, A. Kameswara
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.1-12
    • /
    • 2015
  • This paper is concerned with boundary value problems for systems of n-th order dynamic equations on time scales. Under the suitable conditions, the existence and multiplicity of positive solutions are established by using abstract fixed-point theorems.

MULTIPLE POSITIVE SOLUTIONS OF INTEGRAL BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Liu, Xiping;Jin, Jingfu;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.305-320
    • /
    • 2012
  • In this paper, we study a class of integral boundary value problems for fractional differential equations. By using some fixed point theorems, the results of existence of at least three positive solutions for the boundary value problems are obtained.

PERIODIC SOLUTIONS FOR A QUASILINEAR NON-AUTONOMOUS SECOND-ORDER SYSTEM

  • Tian Yu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.263-271
    • /
    • 2006
  • In this paper, a quasilinear second-order system with periodic boundary conditions is studied. By the least action principle and classical theorems of variational calculus, existence results of periodic solutions are obtained.

EXISTENCE OF GLOBAL SOLUTIONS FOR A PREY-PREDATOR MODEL WITH NON-MONOTONIC FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

  • Xu, Shenghu
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.75-85
    • /
    • 2011
  • In this paper, using the energy estimates and the bootstrap arguments, the global existence of classical solutions for a prey-predator model with non-monotonic functional response and cross-diffusion where the prey and predator both have linear density restriction is proved when the space dimension n < 10.

SOLVABILITY OF LUIKOV'S SYSTEM OF HEAT AND MASS DIFFUSION IN ONE-DIMENSIONAL CASE

  • Bougoffa, Lazhar;Al-Jeaid, Hind K.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.369-380
    • /
    • 2011
  • This paper studies a boundary value problem for a linear coupled Luikov's system of heat and mass diffusion in one-dimensional case. Using an a priori estimate, we prove the uniqueness of the solution. Also, some traveling wave solutions and explicit solutions are obtained by using the transformation ${\xi}$ = x - ct and separation method respectively.

COMPLETELY INTEGRABLE COUPLED POTENTIAL KDV EQUATIONS

  • Wazwaz, Abdul-Majid
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.847-858
    • /
    • 2011
  • We make use of the simplified Hirota's bilinear method with computer symbolic computation to study a variety of coupled potential KdV (pKdV) equations. Each coupled equation is completely integrable and gives multiple soliton solutions and multiple singular soliton solutions. The phase shifts for all coupled pKdV equations are identical whereas the coefficients of the obtained solitons are not identical. The four coupled pKdV equations are resonance free.

POSITIVE SOLUTIONS OF SINGULAR FOURTH-ORDER TWO POINT BOUNDARY VALUE PROBLEMS

  • Li, Jiemei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1361-1370
    • /
    • 2009
  • In this paper, we consider singular fourth-order two point boundary value problems $u^{(4)}$ (t) = f(t, u), 0 < t < 1, u(0) = u(l) = u'(0) = u'(l) = 0, where $f:(0,1){\times}(0,+{\infty}){\rightarrow}[0,+{\infty})$ may be singular at t = 0, 1 and u = 0. By using the upper and lower solution method, we obtained the existence of positive solutions to the above boundary value problems. An example is also given to illustrate the obtained theorems.

  • PDF

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF