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Abstract. In this paper, we study a class of integral boundary value prob-
lems for fractional differential equations. By using some fixed point the-
orems, the results of existence of at least three positive solutions for the
boundary value problems are obtained.
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1. Introduction

We investigate the the existence of multiple positive solutions for the fractional
differential equations with integral boundary conditions





CDpu(t) + f(t, u(t),CDqu(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
g0(s)u(s)ds,

u(1) + aCDqu(1) =
∫ 1

0
g1(s)u(s)ds,

u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0,

(1)

where CDp and CDq are the standard Caputo derivatives, p > 2, 0 < q < 1,
a > 0 are real numbers, f ∈ C([0, 1]× [0,+∞)× (−∞,+∞), [0,+∞)), g0 and g1
are given functions.

It is well known that fractional differential equations have been applied in
various sciences such as physics, mechanics, chemistry, engineering, etc. As a
result, fractional differential equations have been intensely studied, see [1], [2]
and the references therein.
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Research on boundary value problems of ordinary differential equations of
integer order, which involve integer order derivative either in the nonlinear or in
the boundary conditions, is much, see [3]-[7]. Recently, there are many papers
which deal with the existence of the solutions of two-point, three point, multi-
point and integral boundary value problems of fractional differential equations,
see [8]-[12]. Some of these papers were done under the assumption that neither
the integer order derivative nor the fractional derivative was involved in the
nonlinear term or in the boundary value conditions, see [8], [9]. There are some
papers considering the existence of the solutions for three points and multi-point
boundary value problems with dependence on fractional derivatives, see [10], [11].
Moreover, there are also papers dealing with the existence of the solutions for
integral boundary value problems, which involve integer order derivative in the
nonlinear term or in the boundary conditions, see [12].

However, research of the existence of at least three positive solutions of inte-
gral boundary problems with dependence on fractional derivatives both in the
nonlinear term and the boundary conditions is rare. This paper is concerned
with the existence of multiple positive solutions for the boundary value problem
(BVP) (1). By using the theory of Fredholm integral equations and a fixed point
theorem, we obtain the results of existence of at least three positive solutions
for the integral boundary value problems, which involve fractional derivative not
only in the nonlinear term but also in the integral boundary conditions.

2. Preliminaries

In this section, we will introduce definitions and preliminary facts which are
used throughout this paper.
Definition 2.1 ([13]). The fractional integral of order α > 0 of a function
y : (0,+∞) → R is given by

Iαt y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds,

provided that the right side is point wise defined on (0,+∞), and Γ denotes the
Gamma function.
Definition 2.2 ([13]). The Caputo derivative of order α > 0 of a function
x : (0,+∞) → R is given by

CDαx(t) =
1

Γ(n− α)

∫ t

0

x(n)(s)

(t− s)α+1−n
ds, n− 1 < α < n,

provided the right integral converges, where n = [α] + 1 and [α] denotes the
integer part of α.

Throughout the paper, we assume that the following hypothesis holds:
(H1) Let p > 2, 0 < q < 1, a > 0 are real numbers, and n − 1 = [p] < p <
[p] + 1 = n.
Lemma 2.1. Suppose that y ∈ C[0, 1], and (H1) holds. Then the following
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integral boundary value problem




CDpu(t) + y(t) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0
g0(s)u(s)ds,

u(1) + aCDqu(1) =
∫ 1

0
g1(s)u(s)ds,

u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0

(2)

is equivalent to the following fractional integral equation

u(t) =

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

Φ(t, s)u(s)ds, (3)

where

G(t, s) =





tΓ(2−q)
(
aΓ(p)(1−s)p−q−1+Γ(p−q)(1−s)p−1

)
−(a+Γ(2−q))Γ(p−q)(t−s)p−1

(a+Γ(2−q))Γ(p−q)Γ(p) ,

0 ≤ s ≤ t ≤ 1,
tΓ(2−q)(aΓ(p)(1−s)p−q−1+Γ(p−q)(1−s)p−1)

(a+Γ(2−q))Γ(p−q)Γ(p) , 0 ≤ t ≤ s ≤ 1.

Φ(t, s) =
Γ(2− q)g1(s)t+ [a+ Γ(2− q)(1− t)]g0(s)

a+ Γ(2− q)
, (t, s) ∈ [0, 1]× [0, 1].

Proof. By CDpu(t) + y(t) = 0, t ∈ (0, 1) and the boundary conditions
u′′(0) = u′′′(0) = · · · = u(n−1)(0) = 0, we have

u(t) = −Ipt y(t) + u(0) + u′(0)t+
u′′(0)
2!

t2 + · · ·+ u(n−1)(0)

(n− 1)!
tn−1

= − 1

Γ(p)

∫ t

0

(t− s)p−1y(s)ds+ u(0) + u′(0)t.

According to the properties of Caputo derivative, we get

CDqu(t) = −Ip−q
t y(t) +CDq(u(0) + u′(0)t)

= −
∫ t

0
(t− s)p−q−1y(s)ds

Γ(p− q)
+

u′(0)t1−q

Γ(2− q)
.

Then

u(1) = − 1

Γ(p)

∫ 1

0

(1− s)p−1y(s)ds+ u(0) + u′(0),

and

CDqu(1) = −
∫ 1

0
(1− s)p−q−1y(s)ds

Γ(p− q)
+

u′(0)
Γ(2− q)

.

By the boundary conditions

u(0) =
∫ 1

0
g0(s)u(s)ds and u(1) + a CDqu(1) =

∫ 1

0
g1(s)u(s)ds, we have

− 1

Γ(p)

∫ 1

0

(1− s)p−1y(s)ds+ u(0) + u′(0)− a

Γ(p− q)

∫ 1

0

(1− s)p−q−1y(s)ds



308 Xiping Liu, Jingfu Jin and Mei Jia

+
au′(0)
Γ(2− q)

=

∫ 1

0

g1(s)u(s)ds.

Hence,

u′(0) =
aΓ(2− q)

(a+ Γ(2− q))Γ(p− q)

∫ 1

0

(1− s)p−q−1y(s)ds

+
Γ(2− q)

(a+ Γ(2− q))Γ(p)

∫ 1

0

(1− s)p−1y(s)ds

+
Γ(2− q)

a+ Γ(2− q)

∫ 1

0

(g1(s)− g0(s))u(s)ds.

We can easily get that

u(t) =− 1

Γ(p)

∫ t

0

(t− s)p−1y(s)ds+

∫ 1

0

g0(s)u(s)ds

+
atΓ(2− q)

(a+ Γ(2− q))Γ(p− q)

∫ 1

0

(1− s)p−q−1y(s)ds

+
tΓ(2− q)

(a+ Γ(2− q))Γ(p)

∫ 1

0

(1− s)p−1y(s)ds

+
tΓ(2− q)

a+ Γ(2− q)
(

∫ 1

0

g1(s)u(s)ds−
∫ 1

0

g0(s)u(s)ds)

=− 1

Γ(p)

∫ t

0

(t− s)p−1y(s)ds

+
atΓ(2− q)

(a+ Γ(2− q))Γ(p− q)

∫ 1

0

(1− s)p−q−1y(s)ds

+
tΓ(2− q)

(a+ Γ(2− q))Γ(p)

∫ 1

0

(1− s)p−1y(s)ds

+
tΓ(2− q)

a+ Γ(2− q)

∫ 1

0

g1(s)u(s)ds

+
a+ Γ(2− q)(1− t)

a+ Γ(2− q)

∫ 1

0

g0(s)u(s)ds

=

∫ 1

0

G(t, s)y(s)ds+

∫ 1

0

Φ(t, s)u(s)ds.

That is, every solution of (2) is a solution of (3). On the other hand, it is easy
to verify that each solution of (3) is a solution of (2). The proof is completed. ¤

Lemma 2.2. Suppose (H1) holds, then the function G(t, s) in Lemma 2.1 sat-
isfies the following conditions:
(i) G(t, s) is continuous on [0, 1]× [0, 1];
(ii) G(t, s) ≥ 0, for any (t, s) ∈ [0, 1]× [0, 1];
(iii) There exists a constant r1 > 0 such that G(t, s) ≤ r1(1 − s)p−q−1, for any
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(t, s) ∈ [0, 1]× [0, 1];
(iv) There exists a constant r2 > 0 such that G(t, s) ≥ r2(1 − s)p−q−1, for any
(t, s) ∈ [ξ, 1]× [0, 1], where ξ ∈ (0, 1);

(v) There exists a constant r3 > 0 such that |∂G(t,s)
∂t | ≤ r3(1− s)p−q−2, for any

(t, s) ∈ [0, 1]× [0, 1].

Proof. (i) It is easy to check that (i) holds. (ii) Denote for 0 ≤ s ≤ t ≤ 1,

G1(t, s) = − (t− s)p−1

Γ(p)
+

atΓ(p)Γ(2− q)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

(a+ Γ(2− q))Γ(p− q)Γ(p)
,

and for 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
atΓ(p)Γ(2− q)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

(a+ Γ(2− q))Γ(p− q)Γ(p)
.

It is easy to see that G2(t, s) ≥ 0, for any 0 ≤ t ≤ s ≤ 1. So we will prove
that G1(t, s) ≥ 0, for any 0 ≤ s ≤ t ≤ 1. In fact, for 0 ≤ s < t ≤ 1, we have that

t(1− s)p−1 − (t− s)p−1 =t(1− s)p−1 − tp−1(1− s

t
)p−1

≥tp−1(1− s)p−1 − tp−1(1− s

t
)p−1 ≥ 0.

This implies that (t− s)p−1 ≤ t(1− s)p−1 ≤ t(1− s)p−q−1. Hence,

(a+ Γ(2− q))Γ(p− q)Γ(p)G1(t, s)

=atΓ(2− q)Γ(p)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

− (a+ Γ(2− q))Γ(p− q)(t− s)p−1

=a
(
Γ(2− q)Γ(p)t(1− s)p−q−1 − Γ(p− q)(t− s)p−1

)

+ Γ(2− q)Γ(p− q)
(
t(1− s)p−1 − (t− s)p−1

)
.

Since Γ(p)Γ(2− q) > Γ(p− q), for p > 2, 0 < q < 1, then

a
(
Γ(2− q)Γ(p)t(1− s)p−q−1 − Γ(p− q)(t− s)p−1

) ≥ 0,

and

Γ(2− q)Γ(p− q)
(
t(1− s)p−1 − (t− s)p−1

) ≥ 0.

Hence G1(t, s) ≥ 0, for any 0 ≤ s ≤ t ≤ 1. Therefore G(t, s) ≥ 0, for any
(t, s) ∈ [0, 1]× [0, 1].

(iii) For 0 ≤ t ≤ s ≤ 1, we have

(a+ Γ(2− q))Γ(p− q)Γ(p)G2(t, s)

=atΓ(2− q)Γ(p)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

=[atΓ(2− q)Γ(p) + tΓ(2− q)Γ(p− q)(1− s)q](1− s)p−q−1

≤[aΓ(p) + Γ(p− q)]Γ(2− q)(1− s)p−q−1.

And for 0 ≤ s ≤ t ≤ 1,

(a+ Γ(2− q))Γ(p− q)Γ(p)G1(t, s)
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≤atΓ(2− q)Γ(p)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

≤[aΓ(p) + Γ(p− q)]Γ(2− q)(1− s)p−q−1.

Let

r1 =
[aΓ(p) + Γ(p− q)]Γ(2− q)

(a+ Γ(2− q))Γ(p− q)Γ(p)
.

Then we have

G(t, s) ≤ r1(t− s)p−q−1, for any (t, s) ∈ [0, 1]× [0, 1].

(iv) We have proved in (ii) that (t− s)p−1 ≤ t(1− s)p−1 ≤ t(1− s)p−q−1, for
0 ≤ s < t ≤ 1. Therefore, for any 0 ≤ s ≤ t ≤ 1 with t ≥ ξ, we have

(a+ Γ(2− q))Γ(p− q)Γ(p)G1(t, s)

=atΓ(2− q)Γ(p)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

− (a+ Γ(2− q))Γ(p− q)(t− s)p−1.

=aΓ(2− q)Γ(p)t(1− s)p−q−1 − aΓ(p− q)(t− s)p−1

+ Γ(2− q)Γ(p− q)t(1− s)p−1

− Γ(2− q)Γ(p− q)(t− s)p−1

≥aΓ(2− q)Γ(p)t(1− s)p−q−1 − aΓ(p− q)(t− s)p−1

≥aΓ(2− q)Γ(p)t(1− s)p−q−1 − aΓ(p− q)t(1− s)p−q−1

≥aξ[Γ(p)Γ(2− q)− Γ(p− q)](1− s)p−q−1.

And for 0 < ξ ≤ t ≤ s ≤ 1,

(a+ Γ(2− q))Γ(p− q)Γ(p)G2(t, s)

=atΓ(2− q)Γ(p)(1− s)p−q−1 + tΓ(2− q)Γ(p− q)(1− s)p−1

≥aξΓ(2− q)Γ(p)(1− s)p−q−1

≥aξ[Γ(p)Γ(2− q)− Γ(p− q)](1− s)p−q−1.

Let

r2 =
aξ[Γ(p)Γ(2− q)− Γ(p− q)]

(a+ Γ(2− q))Γ(p− q)Γ(p)
,

then we have,

G(t, s) ≥ r2(1− s)p−q−1, for any (t, s) ∈ [ξ, 1]× [0, 1], where ξ ∈ (0, 1).

Since Γ(p)Γ(2− q) > Γ(p− q), with p > 2, 0 < q < 1, then r2 > 0.
(v) In view of the expression of G(t, s), we can easily get that

∂G(t, s)

∂t
=





− (p−1)(t−s)p−2

Γ(p) + aΓ(p)Γ(2−q)(1−s)p−q−1+Γ(2−q)Γ(p−q)(1−s)p−1

(a+Γ(2−q))Γ(p−q)Γ(p) ,

0 ≤ s ≤ t ≤ 1,
aΓ(p)Γ(2−q)(1−s)p−q−1+Γ(2−q)Γ(p−q)(1−s)p−1

(a+Γ(2−q))Γ(p−q)Γ(p) , 0 ≤ t ≤ s ≤ 1.
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From the expression of ∂G(t,s)
∂t , we obtain that, for any (t, s) ∈ [0, 1]× [0, 1),

|∂G(t, s)

∂t
| ≤aΓ(p)Γ(2− q)(1− s)p−q−1 + Γ(2− q)Γ(p− q)(1− s)p−1

(a+ Γ(2− q))Γ(p− q)Γ(p)

+
(p− 1)(1− s)p−2

Γ(p)

=[
aΓ(p)Γ(2− q)(1− s) + Γ(2− q)Γ(p− q)(1− s)q+1

(a+ Γ(2− q))Γ(p− q)Γ(p)

+
(p− 1)(1− s)p−2

Γ(p)(1− s)p−q−2
](1− s)p−q−2

≤[
(p− 1)(1− s)q

Γ(p)
+

aΓ(p)Γ(2− q) + Γ(2− q)Γ(p− q)

(a+ Γ(2− q))Γ(p− q)Γ(p)
](1− s)p−q−2

≤[
p− 1

Γ(p)
+

Γ(2− q)(aΓ(p) + Γ(p− q))

(a+ Γ(2− q))Γ(p− q)Γ(p)
](1− s)p−q−2.

Let

r3 =
p− 1

Γ(p)
+

Γ(2− q)(aΓ(p) + Γ(p− q))

(a+ Γ(2− q))Γ(p− q)Γ(p)
.

Then we have |∂G(t,s)
∂t | ≤ r3(1− s)p−q−2, for any (t, s) ∈ [0, 1]× [0, 1). On the

other hand, |∂G(t,s)
∂t | = 0 ≤ r3(1− s)p−q−2, for s = 1. Therefore,

|∂G(t, s)

∂t
| ≤ r3(1− s)p−q−2, for any (t, s) ∈ [0, 1]× [0, 1].

¤

For convenience, we assume that the following hypotheses hold:
(H2) f ∈ C([0, 1]× [0,+∞)× (−∞,+∞), [0,+∞)) is an given function.
(H3) g0, g1 ∈ C([0, 1], [0,+∞)) are given functions, such that the auxiliary
function Φ(t, s) satisfies, 0 ≤ m0 := min{Φ(t, s) : t, s ∈ [0, 1]} ≤ Φ(t, s) ≤
max{Φ(t, s) : t, s ∈ [0, 1]} := M0 < 1, and max{|Φ′

t(t, s)| : t, s ∈ [0, 1]} :=
M1 < Γ(2− q) < 1.

Let X = {u : u ∈ C([0, 1]),CDqu ∈ C([0, 1])} be endowed with the maximum
norm,

||u|| = max{max
0≤t≤1

|u(t)|, max
0≤t≤1

|CDqu(t)|}.

Then X is a Banach space. Let P = {u ∈ X : u(t) ≥ 0, 0 ≤ t ≤ 1}, it is easy
to check that P is a cone on X.

Define a linear operator

A : X −→ X,Au(t) =

∫ 1

0

Φ(t, s)u(s)ds. (4)
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Lemma 2.3. If (H1)–(H3) hold, then the operator A is a bounded linear oper-
ator, A(P ) ⊂ P . Moreover (I −A) is invertible and

||(I −A)−1|| ≤ max{ 1

1−M0
,
M1 + (1−M0)Γ(2− q)

(1−M0)Γ(2− q)
}.

Proof. (i) It is clear that A is a linear operator.

|Au(t)| = | ∫ 1

0
Φ(t, s)u(s)ds| ≤ M0||u|| and |CDqAu(t)| = |CDq

∫ 1

0
Φ(t, s)u(s)ds|

≤ I1−q
t

∫ 1

0
|Φ′

t(t, s)|ds‖u‖ ≤ M1||u||
Γ(2−q) .

Therefore

||A|| ≤ max{M0,
M1

Γ(2− q)
} < 1.

This shows that A is a bounded linear operator.
(ii) Let u ∈ P , then u ∈ C([0, 1]), CDqu ∈ C([0, 1]) and u(t) ≥ 0. Be-

cause Φ(t, s) is continuous and nonnegative, it is easy to check that Au ∈
C([0, 1]), Au(t) ≥ 0. We can easily find that Φ′

t(t, s) = Γ(2−q)(g1(s)−g0(s))
a+Γ(2−q) is

continuous.
Hence, we have

CDqAu(t) = I1−q
t

∫ 1

0
Φ′

t(t, s)u(s)ds =
t1−q

∫ 1
0
(g1(s)−g0(s))u(s)ds

a+Γ(2−q) ∈ C([0, 1]).

Therefore, Au ∈ P , which implies that A(P ) ⊂ P .
(iii) We have proved in (i) that ||A|| ≤ max{M0,

M1

Γ(2−q)} < 1, which implies

that I −A is invertible.
To find the expression for (I −A)−1, we use the theory of Fredholm integral

equations. We have u(t) = (I − A)−1v(t) if and only if u(t) = v(t) + Au(t) for
t ∈ I. The definition of the operator A implies that

u(t) = v(t) +

∫ 1

0

Φ(t, s)u(s)ds. (5)

The condition ||A|| < max{M0,
M1

Γ(2−q)} < 1 implies that 1 is not an eigenvalue

of the operator A. Hence (5) has a unique solution u ∈ X, for every v ∈ X. By
successive substitutions in (5), we obtain

u(t) = (I −A)−1v(t) = v(t) +

∫ 1

0

R(t, s)v(s)ds, (6)

where the resolvent kernel R(t, s) is given by R(t, s) = Σ∞
j=1Φj(t, s),

here Φ1(t, s) = Φ(t, s), Φj(t, s) =
∫ 1

0
Φ(t, τ)Φj−1(τ, s)dτ, (j = 2, 3, · · ·). It is

easy to show that

R′
t(t, s) = Σ∞

j=1Φ
′
j,t(t, s), Φ′

1,t(t, s) = Φ′
t(t, s),

and

Φ′
j,t(t, s) =

∫ 1

0

Φ′
t(t, τ)Φj−1(τ, s)dτ , (j = 2, 3, · · ·).
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Because 0 ≤ m0 ≤ Φ(t, s) ≤ M0 < 1 and |Φ′
t(t, s)| ≤ M1 < Γ(2− q) < 1,

we have mj
0 ≤ Φj(t, s) ≤ M j

0 and |Φ′
j,t(t, s)| ≤ M1M

j−1
0 . Then

m0

1−m0
≤ R(t, s) ≤ M0

1−M0
and |R′

t(t, s)| ≤
M1

1−M0
. (7)

In view of (6) and (7), we obtain

|(I −A)−1v(t)| ≤|v(t)|+
∫ 1

0

|R(t, s)v(s)ds|

≤(1 +
M0

1−M0
)||v||

=
1

1−M0
||v||.

|CDq(I −A)−1v(t)| ≤|CDqv(t)|+ |CDq

∫ 1

0

R(t, s)v(s)ds|

≤||v||+ I1−q
t

∫ 1

0

|R′
t(t, s)| |v(s)|ds

≤||v||+ M1||v||
(1−M0)Γ(2− q)

=
[(1−M0)Γ(2− q) +M1]

(1−M0)Γ(2− q)
||v||.

Therefore ||(I −A)−1|| ≤ max{ 1
1−M0

, M1+(1−M0)Γ(2−q)
(1−M0)Γ(2−q) }. ¤

Now we introduce the fixed point theorem in a cone which due to Bai and
Ge (See [3]), and it can be regarded as a generalization of the Leggett-Williams
fixed point theorem.

Let E be a Banach space and P ⊂ E be a cone. α, β : P → [0,+∞) are two
nonnegative continuous convex functions satisfying

||u|| ≤ M max{α(u), β(u)}, for u ∈ P, (8)

where M is a positive constant, and

Ω = {u ∈ P : α(u) < k, β(u) < L} 6= ∅, for k > 0, L > 0. (9)

By (8) and (9), Ω is a bounded nonempty open subset in P.
Let k > c > 0, L > 0 be given, α, β : P → [0,+∞) be two nonnegative contin-

uous convex functions satisfying (8) and (9), and γ be a nonnegative continuous
concave function on the cone P. Define bounded convex sets

P (α, k;β, L) = {u ∈ P : α(u) < k, β(u) < L},
P (α, k;β, L) = {u ∈ P : α(u) ≤ k, β(u) ≤ L},

P (α, k;β, L; γ, c) = {u ∈ P : α(u) < k, β(u) < L, γ(u) > c},
P (α, k;β, L; γ, c) = {u ∈ P : α(u) ≤ k, β(u) ≤ L, γ(u) ≥ c}.
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Lemma 2.4 ([3]). Let E be a Banach space, P ⊂ E be a cone and k2 ≥
d > b > k1 > 0, L2 ≥ L1 > 0 be given. Assume that α, β are nonnegative
continuous convex functions on P, such that (8) and (9) are satisfied, γ is an
nonnegative continuous concave function on P, such that γ(u) ≤ α(u), for all
u ∈ P (α, k2;β, L2) and sets S : P (α, k2;β, L2) → P (α, k2;β, L2) be completely
continuous operator. Suppose
(C1) {u ∈ P (α, d;β, L2; γ, b) : γ(u) > b} 6= ∅, γ(Su) > b, for u ∈ P (α, d;β, L2; γ, b);
(C2) α(Su) < k1, β(Su) < L1, for all u ∈ P (α, k1;β, L1);
(C3) γ(Su) > b, for all u ∈ P (α, k2;β, L2; γ, b), with α(Su) > d.

Then S has at least three fixed points u1, u2, u3 ∈ P (α, k2; β, L2). Further,

u1 ∈ P (α, k1;β, L1), u2 ∈ {P (α, k2;β, L2; γ, b) : γ(u) > b},
u3 ∈ P (α, k2;β, L2) \ {P (α, k2;β, L2; γ, b) ∪ P (α, k1;β, L1)}.

3. Main results

Define a nonlinear operator T : X → X by

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds. (10)

In view of Lemma 2.1, (4) and (10), we obtain that u is solution of BVP(1)
if and only if u is solution of the following equation:

u(t) = Tu(t) +Au(t), t ∈ I. (11)

Clearly, u is a solution of (11) if and only if u is a solution of u(t) = (I −
A)−1Tu(t), that is a fixed point of the operator S := (I − A)−1T . By (6) and
(10), we have

Su(t) =

∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds.

Define functions

α(u) = max
0≤t≤1

|u(t)|, β(u) = max
0≤t≤1

|CDqu(t)|, γ(u) = min
ξ≤t≤1

|u(t)|.

Then α, β, γ : P → [0,+∞) are three continuous nonnegative functions such
that ||u|| = max{α(u), β(u)}, and (8), (9) hold; α, β are convex functions, γ is
concave functions and γ(u) ≤ α(u) holds, for all u ∈ P .

Theorem 3.1. Suppose that (H1)− (H3) hold, and there exist constants

k2 ≥ br1(1−m0)
r2(1−M0)(1−m0ξ)

> b > k1 > 0, L2 ≥ L1 > 0 such that

b(p− q)(1−m0)

(1−m0ξ)r2
< min{k2(1−M0)(p− q)

r1
,
Γ(2− q)(1−M0)(p− q − 1)L2

(1−M0)r3 +M1r1
},
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and the following assumptions hold:

(A1) f(t, u, v) < min{k1(p−q)(1−M0)
r1

, Γ(2−q)(1−M0)(p−q−1)L1

(1−M0)r3+M1r1
},

for (t, u, v) ∈ [0, 1]× [0, k1]× [−L1, L1];

(A2) f(t, u, v) > b(p−q)(1−m0)
(1−m0ξ)r2

,

for (t, u, v) ∈ [ξ, 1]× [b, br1(1−m0)
r2(1−M0)(1−m0ξ)

]× [−L2, L2];

(A3) f(t, u, v) ≤ min{k2(1−M0)(p−q)
r1

, Γ(2−q)(1−M0)(p−q−1)L2

(1−M0)r3+M1r1
},

for (t, u, v) ∈ [0, 1]× [0, k2]× [−L2, L2].
Then BVP(1) has at least three positive solutions u1, u2, and u3 satisfying

max
0≤t≤1

u1(t) ≤ k1, max
0≤t≤1

|CDqu1(t)| ≤ L1;

b < min
ξ≤t≤1

u2(t) ≤ max
0≤t≤1

u2(t) ≤ k2, max
0≤t≤1

|CDqu2(t)| ≤ L2;

max
0≤t≤1

u3(t) ≤ br1(1−m0)

r2(1−M0)(1−m0ξ)
, max

0≤t≤1
|CDqu3(t)| ≤ L2.

Proof. BVP(1) has a solution u = u(t) if and only if u solves the operator
equation

u(t) = Su(t) =

∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds.

It is easy to show that S : P → P is a completely continuous operator. Now,
we show that the conditions of Lemma 2.4 are satisfied.

For u ∈ P (α, k2;β, L2), it implies that |u(t)| ≤ k2, |CDqu(t)| ≤ L2 for t ∈
[0, 1]. By (A3), Lemma 2.2 and (7), we have

α(Su) = max
0≤t≤1

|
∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds|

≤r1

∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds

+
M0r1

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−M0

=
r1

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−M0

≤(
r1

∫ 1

0
(1− s)p−q−1ds

1−M0
)
k2(1−M0)(p− q)

r1
=k2.
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By Lemma 2.2 and (7), we have

β(Su) = max
0≤t≤1

|CDq(

∫ 1

0

(G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds)|

= max
0≤t≤1

|I1−q
t (

∫ 1

0

G′
t(t, s)f(s, u(s),

CDqu(s)ds)

+

∫ 1

0

R′
t(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds)|

≤[ r3
Γ(2− q)

+
M1r1

(1−M0)Γ(2− q)

] ∫ 1

0

(1− s)p−q−2f(s, u(s),CDqu(s))ds

≤r3(1−M0) +M1r1
Γ(2− q)(1−M0)

· Γ(2− q)(1−M0)(p− q − 1)L2

r3(1−M0) +M1r1

∫ 1

0

(1− s)p−q−2ds

=L2.

Then S : P (α, k2;β, L2) → P (α, k2;β, L2).
In the same way, by (A1), Lemma 2.2 and (7), we can obtain that S :

P (α, k1;β, L1) → P (α, k1;β, L1). Therefore condition (C2) of Lemma 2.4 is sat-
isfied.

To check condition (C1) of Lemma 2.4, we choose u0 = br1(1−m0)
r2(1−M0)(1−m0ξ)

, 0 ≤
t ≤ 1. It is easy to see that

u0 =
br1(1−m0)

r2(1−M0)(1−m0ξ)
∈ P (α,

br1(1−m0)

r2(1−M0)(1−m0ξ)
;β, L2; γ, b)|γ(u) > b} 6= ∅.

For u ∈ P (α, br1(1−m0)
r2(1−M0)(1−m0ξ)

;β, L2; γ, b), we have

b ≤ u(t) ≤ br1(1−m0)

r2(1−M0)(1−m0ξ)
, ξ ≤ t ≤ 1, −L2 ≤CDqu ≤ L2.

By assumption (A2), f(t, u(t),CDqu(t)) > b(p−q)(1−m0)
(1−m0ξ)r2

, we can obtain that

γ(Su) = min
ξ≤t≤1

|Su(t)|

= min
ξ≤t≤1

|
∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds|

≥r2

∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds

+
m0

1−m0

∫ 1

ξ

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds
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≥r2

∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds

+
m0r2(1− ξ)

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−m0

=
(1−m0ξ)r2

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−m0

>
(1−m0ξ)r2

1−m0

(1−m0)(p− q)b

(1−m0ξ)r2

∫ 1

0

(1− s)p−q−1ds

=b.

This implies that γ(Su) > b, for all u ∈ P (α, br1(1−m0)
r2(1−M0)(1−m0ξ)

;β, L2; γ, b).

Finally, we show that (C3) of Lemma 2.4 also holds.

For u ∈ P (α, k2;β, L2; γ, b), with α(Su) > br1(1−m0)
r2(1−M0)(1−m0ξ)

, we have

α(Su) = max
0≤t≤1

|
∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds|

≤r1

∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds

+
M0r1

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−M0

=
r1

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−M0
.

This implies that
∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds ≥ (1−M0)α(Su)

r1
.

Therefore,

γ(Su) = min
ξ≤t≤1

|Su(t)|

= min
ξ≤t≤1

|
∫ 1

0

G(t, s)f(s, u(s),CDqu(s))ds

+

∫ 1

0

R(t, s)

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds|

≥r2

∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds

+
m0

1−m0

∫ 1

ξ

∫ 1

0

G(s, τ)f(τ, u(τ),CDqu(τ))dτds
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≥r2

∫ 1

0

(1− s)p−q−1f(s, u(s),CDqu(s))ds

+
m0r2(1− ξ)

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−m0

=
(1−m0ξ)r2

∫ 1

0
(1− s)p−q−1f(s, u(s),CDqu(s))ds

1−m0

≥ (1−m0ξ)r2
1−m0

(1−M0)α(Su)

r1

>
(1−m0ξ)r2
(1−m0)

(1−M0)

r1

br1(1−m0)

r2(1−M0)(1−m0ξ)

=b.

So the condition (C3) of Lemma 2.4 holds. In addition, as

α(u3) ≤ r1(1−m0)γ(u3)
r2(1−m0ξ)(1−M0)

, we have max0≤t≤1 u3(t) ≤ r1(1−m0)b
r2(1−m0ξ)(1−M0)

.

From Lemma 2.4 we obtain that the operator S has at least three fixed points
u1, u2, u3 ∈ P (α, k2;β, L2; γ, b), that is BVP(1) has at least three positive solu-
tions u1, u2, and u3 satisfying

max
0≤t≤1

u1(t) ≤ k1, max
0≤t≤1

|CDqu1(t)| ≤ L1;

b < min
ξ≤t≤1

u2(t) ≤ max
0≤t≤1

u2(t) ≤ k2, max
0≤t≤1

|CDqu2(t)| ≤ L2;

max
0≤t≤1

u3(t) ≤ br1(1−m0)

r2(1−M0)(1−m0ξ)
, max

0≤t≤1
|CDqu3(t)| ≤ L2.

¤

Remark 3.1. With Lemma 2.4 we have the result max0≤t≤1 u3(t) ≤ k2,
minξ≤t≤1 u3(t) < b. However, from BVP(1) the function α, γ holds additional
relation

γ(u) = min
ξ≤t≤1

u(t) ≥ (1−m0ξ)r2(1−M0)α(u)

(1−m0)r1
, for u ∈ P.

So we can obtain the better result max
0≤t≤1

u3(t) ≤ br1(1−m0)
r2(1−M0)(1−m0ξ)

.

Theorem 3.2. Suppose that there exist 0 < k1 < b1 < b1r1(1−m0)
r2(1−M0)(1−m0ξ)

≤ k2 <

b2 < b2r1(1−m0)
r2(1−M0)(1−m0ξ)

≤ · · · ≤ kn, 0 < L1 ≤ L2 ≤ · · · ≤ Ln−1, n ∈ N,

such that for 1 ≤ i ≤ n− 1,

bi(p− q)(1−m0)

(1−m0ξ)r2
≤ min{ki+1(1−M0)(p− q)

r1
,
Γ(2− q)(1−M0)(p− q − 1)Li+1

(1−M0)r3 +M1r1
},

and the following conditions are satisfied

(E1) f(t, u, v) < min{ki(p−q)(1−M0)
r1

, Γ(2−q)(1−M0)(p−q−1)Li

(1−M0)r3+M1r1
},

for (t, u, v) ∈ [0, 1]× [0, ki]× [−Li, Li];
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(E2) f(t, u, v) > bi(p−q)(1−m0)
(1−m0ξ)r2

,

for (t, u, v) ∈ [ξ, 1]× [bi,
bir1(1−m0)

r2(1−M0)(1−m0ξ)
]× [−Li+1, Li+1], 1 ≤ i ≤ n− 1.

Then BVP (1) has at least 2n− 1 positive solutions.

Proof. When n = 1, it follows from condition (E1) that S : P (α, k1;β, L1) →
P (α, k1;β, L1) ⊆ P (α, k1;β, L1), which means that at least one fixed point u1 ∈
P (α, k1;β, L1) by the Schauder fixed point theorem. When n = 2, it is clear
that Theorem 3.2 holds. Then we can obtain at least three positive solutions
u2, u3, u4. Following this way, we can finish the proof by the induction method.

¤
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