• 제목/요약/키워드: compressible soil

검색결과 49건 처리시간 0.021초

석탄회 및 폐타이어 재료의 장기 압축 침하 거동 특성 (Long-term Compressible Settlement of Coal Ash and Tire Shred as Fill Materials)

  • 이성진;신민호;황선근;이용식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.858-865
    • /
    • 2009
  • Based on the proven feasibility of bottom ash and tire shred-soil mixtures as lightweight fill materials, tire shred-bottom ash mixtures were suggested as a new lightweight fill material to replace the conventional construction material with bottom ash. Therefore, we carried out the laboratory test, field compaction test and performance test of large scale embankment in order to evaluate their suitability for the use of lightweight fill materials in the before studies. We could verified that the ash, tire-shred and the mixture are able to be the useful materials as light fill materials. In this study, we estimated the long-term compressible settlements for 6 materials such as TA(Tire-Bottom Ash mixture), TBA(Tire-Bottom Ash<5mm) mixture, TWS(Tire-Weathered Soil mixture), Bottom Ash, Bottom Ash(<5mm), Weathered soils.

  • PDF

부마찰력을 고려한 말뚝기초 설계 (Pile Design for Negative Skin Friction)

  • 윤여원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 말뚝기초위원회 워크샵
    • /
    • pp.141-154
    • /
    • 1999
  • Under the compressible circumstance of a soil deposit, the soil move downward relative to the pile. The down drag force requires higher point bearing and causes failure of a pile from time to time. In this paper the mechanism of negative skin friction on a pile, design and reduction of the negative friction is reviewed.

  • PDF

토목섬유를 이용한 매설암거의 토압저감효과 연구 (Load Reduction on Buried Pipes and Culverts using Geosynthetics)

  • 김진만;조삼덕;최봉혁;오세용;안주환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 토목섬유기술위원회 학술세미나 논문집
    • /
    • pp.21-31
    • /
    • 2001
  • The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. A new construction method was introduced, which reduces earth pressure acting on culvert and conduit by placing a thin layer of EPS. This paper analyzes the compressible inclusion function of EPS and geogrid which can results in reduction of earth pressure by arching that is the behaviour of soil-structure system involving redistribution of soil stress around the structure. Field test was conducted to evaluate the reduction of vertical earth pressure using EPS and geogrid inclusion. Based on field test it is found that the magnitude of reduced vertical earth pressure was about 24~50% compared to conventional method.

  • PDF

EPS의 압축성을 이용한 콘크리트 옹벽 시스템 연구 (Retaining Wall System Using the Compressible Inclusion Function of EPS)

  • 김진만;김호비;조삼덕;주태성;최봉혁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.411-418
    • /
    • 2001
  • The last 30 years have been significant worldwide growth in the use of EPS as a lightweight fill material. This paper analyzes the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests was conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS, Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure was reduced about 20% compared with theoretical active earth pressure.

  • PDF

침하 억제를 위하여 초연약지반에 설치된 섬유보강 성토지지말뚝의 내진성능 평가 (Evaluations of a Seismic Performance of Geosynthetic-Reinforced Embankment Supporting Piles for a Ultra Soft Ground)

  • 이일화;강태호;이수형;이성진;방의석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.918-927
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. Geosynthetic-reinforced embankment supporting piles method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In the paper, the evaluations of a seismic performance of geosynthetic-reinforced embankment piles for a ultra soft ground during earthquake were studied. the equivalent linear analysis was performed by SHAKE for soft ground. A seismic performance analysis of Piles was performed by GROUP PILE and PLAXIS for geosynthetic-reinforced embankment piles. Guidelines is required for pile displacement during earthquake. Conclusions of the studies come up with a idea for soil stiffness, conditions of pile cap, pile length and span.

  • PDF

Analysis of circular plates on two - parameter elastic foundation

  • Saygun, Ahmet;Celik, Mecit
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.249-267
    • /
    • 2003
  • In this study, circular plates subjected to general type of loads and supported on a two-parameter elastic foundation are analysed. The stiffness, elastic bedding and soil shear effect matrices of a fully compatible ring sector plate element, developed by Saygun (1974), are obtained numerically assuming variable thickness of the element. Ring sector soil finite element is also defined to determine the deflection of the soil surface outside the domain of the plate in order to establish the interaction between the plate and the soil. According to Vallabhan and Das (1991) the elastic bedding (C) and shear parameters ($C_T$) of the foundation are expressed depending on the elastic constants ($E_s$, $V_s$) and the thickness of compressible soil layer ($H_s$) and they are calculated with a suitable iterative procedure. Using ring sector elements presented in this paper, permits the generalization of the loading and the boundary conditions of the soil outside the plate.

수치해석에 의한 다층토 압밀의 경계요소면 해석 (Layer Interface Analysis of Multi-Layered Soils by Numerical Methods)

  • 김팔규;류권일;구기욱;남상규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.349-356
    • /
    • 1999
  • In general, the term soft ground includes clayey soils, which have large compressibility and small shear resistance due to the external load. All process of consolidation in compressible soils can be explained in terms of a transfer of load from an incompressible pore-water to a compressible soil structure. Therefore, one of the most important subjects about the characteristics of the time-dependent consolidation of the clay foundation by the change of load may be the presumption of the final settlement caused by consolidation and the degree of consolidation according to the time. The problems of discontinuous layer interface are very important in the algorithm and programming for the analysis of multi-layered soils using a numerical analysis, finite difference method. Better results can be obtained by the Process for discontinuous layer interface, since it can help consolidation analysis to model the actual ground. The purpose of this paper Provides an efficient computer algorithm based on numerical analysis using finite difference method(F.D.M.) which account for multi-layered soils to determine the degree of consolidation and excess pore pressures relative to time and positions more realistically.

  • PDF

콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토 (Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track)

  • 이일화;이성진;이수형;방의석;정장용
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

석회와 여러 첨가제에 의한 토질안정처리 (Soil-Lime and Additives Stabilization)

  • 민덕기;황광모;박근호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.657-664
    • /
    • 2000
  • Weak and soft compressible clay deposits are commonly found in natural subgrade soils. These Soils need to be stabilized for using the subbase materials of highway constructions. This paper presents that a chemical treatment using chemical additives comprised of sulfate(SO$_4$) and chloride(Cl) is evaluated for stabilizing soft clay deposits and lime. The physical and mechanical characteristics of soil-lime and additives are described by means of a laboratory study. The study results indicate that the presence of chlorides encouraged the efficiency of lime stabilization, and the use of calcium chloride with quicklime is the best additive for improving soil behavior. The treated soil with lime-calcium chloride can have the adaptability to the subbase materials of highway constructions.

  • PDF

압축재 포설에 따른 매설관거의 하중저감 효과 평가 (A Study of Load Reduction Effect on Conduits Using Compressible Inclusion)

  • 김진만;최봉혁;조삼덕;주태성;김호비;이종화
    • 한국지반신소재학회논문집
    • /
    • 제2권2호
    • /
    • pp.3-11
    • /
    • 2003
  • 지중매설구조물에 작용하는 수직하중 저감기법인 유도 고랑형 기법은 관거 상단의 내부토체에 압축성이 큰 재료(점토, 이토, 지푸라기 등)를 뒤채움함으로서 다짐된 지반인 외부토체에 대해 상대적으로 하향 침하하는 변위를 유발시킴으로써 발생되는 아칭효과에 의해 하중을 저감시키는 기법이다. 그러나, 기존의 유도 고랑형 기법은 상대적 변위를 유발시키기 위한 압축재인 점토, 이토, 지푸라기 등이 현장의 품질관리차원에서 관리가 어렵다는 문제점을 가지고 있다. 최근의 관련 연구 경향은 압축재로서 재료 관리가 용이한 대체 재료의 개발과 EPS 블록의 활용성 검증 등에 초점이 모아 지고 있는 실정이다. 본 논문에서는 연성강관의 포설 효과, EPS 블록 포설 형태, 연성강관의 직경 등을 변화인자로 한 일련의 실험을 통하여 연성관 및 EPS 블록 포설에 따른 수직하중 저감 효과와 매커니즘을 분석하고, 현장적용에 필요한 최적 단면 및 설계 시 적용되는 환산하중계수(K')을 제시하고자 한다.

  • PDF