KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1199-1212
/
2019
This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권9호
/
pp.2284-2298
/
2013
In this paper, a fast and efficient signal reconstruction algorithm for solving the basis pursuit (BP) problem in compressed sensing (CS) is proposed. This fast linearized Bregman method (FLBM), which is inspired by the fast method of Beck et al., is based on the fact that the linearized Bregman method (LBM) is equivalent to a gradient descent method when applied to a certain formulation. The LBM requires $O(1/{\varepsilon})$ iterations to obtain an ${\varepsilon}$-optimal solution while the FLBM reduces this iteration complexity to $O(1/\sqrt{\varepsilon})$ and requiring almost the same computational effort on each iteration. Our experimental results show that the FLBM can be faster than some other existing signal reconstruction methods.
무선 헬스케어 서비스에서 생체신호 모니터링 시스템의 전력소모를 효과적으로 감소시킬 수 있는 압축센싱 기법을 다양한 생체신호에 적용하여 압축률을 비교하였다. 압축센싱 기법을 이용하여 일반적인 심전도, 근전도, 뇌전도 신호의 압축과 복원을 수행하였고, 이를 통해 복원된 신호와 원신호를 비교함으로써, 압축센싱의 유효성을 판단하였다. 유사랜덤 행렬을 사용하여 실제 생체신호를 압축하였으며, 압축된 신호는 Block Sparse Bayesian Learning(BSBL) 알고리즘을 사용하여 복원하였다. 가장 산제된 특성을 가지는 근전도 신호의 최대 압축률이 10배로 확인되어 가장 높았으며, 심전도 신호의 최대 압축률은 5배였다. 가장 산제된 특성이 작은 뇌전도 신호의 최대 압축률은 4배였다. 연구된 심전도, 근전도, 뇌전도 신호의 압축률은 향후 압축센싱을 적용한 무선 생체신호 모니터링 회로 및 시스템 개발시 유용한 기초자료로 활용될 수 있다.
In this paper, we consider a binary recovery framework of the Compressed Sensing (CS) problem. We derive an upper bound for $L_0$ recovery performance of a binary sparse signal in terms of the dimension N and sparsity K of signals, the number of measurements M. We show that the upper bound obtained from this work goes to the limit bound when the sensing matrix sufficiently become dense. In addition, for perfect recovery performance, if the signals are very sparse, the sensing matrices required for $L_0$ recovery are little more dense.
압축 센싱 (Compressed Sensing) 기술을 통해 $M{\times}N$ 측정 행렬의 원소들이 특정의 독립적인 확률 분포에서 뽑혀 identically 분포의 성질을 가지고 있을 때 $M{\ll}N$의 경우에도 스파스 (sparse) 신호를 높은 확률로 정확하게 복원할 수 있다. $L_1$-최소화 알고리즘이 불완전한 측정에 대해서도 스파스 (sparse) 신호를 복원할 수 있다는 것은 잘 알려진 사실이다. 본 논문에서는 OMP를 변형시킨 support 검출과 가중치 기법을 이용한 $L_1$-최소화 방법을 통하여 스파스 (sparse) 신호의 복원 성능을 향상시키는 알고리즘을 제안하고자 한다.
가장 간단한 샘플링을 위한 목적으로 SPL (Smoothed Projected Landweber)기법 기반의 움직임 보상 블록 압축센싱 기법이 모든 센싱 프레임들에 대해 분산 압축 비디오 센싱 기술이 적용되는 효과적인 방안으로 연구되어 오고 있다. 그러나 기존의 움직임 보상 블록기반의 압축센싱 기법은 매우 간단하여 복원된 위너-지브 프레임에서 우수한 화질을 제공하지 못하는 한계점이 있다. 본 논문에서는 기존의 움직임 보상 블록기반의 압축센싱 기법을 이용한 위너-지브 프레임에서 우수한 화질을 제공될 수 있도록 알고리즘을 변형한다. 즉, 제안된 알고리즘은 참조 프레임이 연속적인 프레임들에 있어 시간적 상관관계에 기초해서 적응적으로 선택되도록 하는 방법으로 설계된다. 다양한 실험 결과를 통하여 제안한 알고리즘은 기존의 알고리즘에 비해 우수한 화질을 제공할 수 있음을 확인한다.
Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
Journal of Communications and Networks
/
제18권1호
/
pp.95-104
/
2016
Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.
Chae Jung Park;Jihoon Cha;Sung Soo Ahn;Hyun Seok Choi;Young Dae Kim;Hyo Suk Nam;Ji Hoe Heo;Seung-Koo Lee
Korean Journal of Radiology
/
제21권12호
/
pp.1334-1344
/
2020
Objective: Compressed sensing (CS) has gained wide interest since it accelerates MRI acquisition. We aimed to compare the 3D post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition (VISTA) with CS (VISTA-CS) and without CS (VISTA-nonCS) in intracranial vessel wall MRIs (VW-MRI). Materials and Methods: From April 2017 to July 2018, 72 patients who underwent VW-MRI, including both VISTA-CS and VISTA-nonCS, were retrospectively enrolled. Wall and lumen volumes, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured from normal and lesion sites. Two neuroradiologists independently evaluated overall image quality and degree of normal and lesion wall delineation with a four-point scale (scores ≥ 3 defined as acceptable). Results: Scan coverage was increased in VISTA-CS to cover both anterior and posterior circulations with a slightly shorter scan time compared to VISTA-nonCS (approximately 7 minutes vs. 8 minutes). Wall and lumen volumes were not significantly different with VISTA-CS or VISTA-nonCS (interclass correlation coefficient = 0.964-0.997). SNR was or trended towards significantly higher values in VISTA-CS than in VISTA-nonCS. At normal sites, CNR was not significantly different between two sequences (p = 0.907), whereas VISTA-CS provided lower CNR in lesion sites compared with VISTA-nonCS (p = 0.003). Subjective wall delineation was superior with VISTA-nonCS than with VISTA-CS (p = 0.019), although overall image quality did not differ (p = 0.297). The proportions of images with acceptable quality were not significantly different between VISTA-CS (83.3-97.8%) and VISTA-nonCS (75-100%). Conclusion: CS may be useful for intracranial VW-MRI as it allows for larger scan coverage with slightly shorter scan time without compromising image quality.
본 논문에서는 무인항공기인 방송용 멀티콥터를 이용한 Full-HD급 이상 화질의 이미지를 효율적으로 전송하기 위해 이미지 압축 센싱 기법을 적용하고, Sparse 신호의 효율적 복원을 위해 Turbo 알고리즘과 Markov chain Monte Carlo (MCMC) 알고리즘의 복원 성능을 모의실험을 통해 비교 분석하였다. 제안된 복원 기법은 압축 센싱에 기반하여 데이터 용량을 줄이고 빠르고 오류 없는 원신호 복원에 중점을 두었다. 다수의 이미지 파일로 모의실험을 진행한 결과 Loopy belief propagation(BP) 기반의 Turbo 복원 알고리즘이 Gibbs sampling기반 알고리즘을 수행하는 MCMC 알고리즘 보다 평균 복원 연산 시간, NMSE 값에서 우수하여 보다 효율적인 복원 방법으로 생각된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2028-2041
/
2019
Compressed sensing (CS) is a new theory. With regard to the sparse signal, an exact reconstruction can be obtained with sufficient CS measurements. Nevertheless, in practical applications, the transform coefficients of many signals usually have weak sparsity and suffer from a variety of noise disturbances. What's worse, most existing classical algorithms are not able to effectively solve this issue. So we proposed an efficient algorithm based on smoothed ${\ell}_0$ norm for sparse signal reconstruction. The direct ${\ell}_0$ norm problem is NP hard, but it is unrealistic to directly solve the ${\ell}_0$ norm problem for the reconstruction of the sparse signal. To select a suitable sequence of smoothed function and solve the ${\ell}_0$ norm optimization problem effectively, we come up with a generalized approximate function model as the objective function to calculate the original signal. The proposed model preserves sharper edges, which is better than any other existing norm based algorithm. As a result, following this model, extensive simulations show that the proposed algorithm is superior to the similar algorithms used for solving the same problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.