• 제목/요약/키워드: compressed sensing (CS)

검색결과 47건 처리시간 0.021초

Quickest Spectrum Sensing Approaches for Wideband Cognitive Radio Based On STFT and CS

  • Zhao, Qi;Qiu, Wei;Zhang, Boxue;Wang, Bingqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권3호
    • /
    • pp.1199-1212
    • /
    • 2019
  • This paper proposes two wideband spectrum sensing approaches: (i) method A, the cumulative sum (CUSUM) algorithm with short-time Fourier transform, taking advantage of the time-frequency analysis for wideband spectrum. (ii)method B, the quickest spectrum sensing with short-time Fourier transform and compressed sensing, shortening the time of perception and improving the speed of spectrum access or exit. Moreover, method B can take advantage of the sparsity of wideband signals, sampling in the sub-Nyquist rate, and it is more suitable for wideband spectrum sensing. Simulation results show that method A significantly outperforms the single serial CUSUM detection for small SNRs, while method B is substantially better than the block detection based spectrum sensing in small probability of the false alarm.

Fast Linearized Bregman Method for Compressed Sensing

  • Yang, Zhenzhen;Yang, Zhen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권9호
    • /
    • pp.2284-2298
    • /
    • 2013
  • In this paper, a fast and efficient signal reconstruction algorithm for solving the basis pursuit (BP) problem in compressed sensing (CS) is proposed. This fast linearized Bregman method (FLBM), which is inspired by the fast method of Beck et al., is based on the fact that the linearized Bregman method (LBM) is equivalent to a gradient descent method when applied to a certain formulation. The LBM requires $O(1/{\varepsilon})$ iterations to obtain an ${\varepsilon}$-optimal solution while the FLBM reduces this iteration complexity to $O(1/\sqrt{\varepsilon})$ and requiring almost the same computational effort on each iteration. Our experimental results show that the FLBM can be faster than some other existing signal reconstruction methods.

저전력 무선 생체신호 모니터링을 위한 심전도/근전도/뇌전도의 압축센싱 연구 (Study on Compressed Sensing of ECG/EMG/EEG Signals for Low Power Wireless Biopotential Signal Monitoring)

  • 이욱준;신현철
    • 전자공학회논문지
    • /
    • 제52권3호
    • /
    • pp.89-95
    • /
    • 2015
  • 무선 헬스케어 서비스에서 생체신호 모니터링 시스템의 전력소모를 효과적으로 감소시킬 수 있는 압축센싱 기법을 다양한 생체신호에 적용하여 압축률을 비교하였다. 압축센싱 기법을 이용하여 일반적인 심전도, 근전도, 뇌전도 신호의 압축과 복원을 수행하였고, 이를 통해 복원된 신호와 원신호를 비교함으로써, 압축센싱의 유효성을 판단하였다. 유사랜덤 행렬을 사용하여 실제 생체신호를 압축하였으며, 압축된 신호는 Block Sparse Bayesian Learning(BSBL) 알고리즘을 사용하여 복원하였다. 가장 산제된 특성을 가지는 근전도 신호의 최대 압축률이 10배로 확인되어 가장 높았으며, 심전도 신호의 최대 압축률은 5배였다. 가장 산제된 특성이 작은 뇌전도 신호의 최대 압축률은 4배였다. 연구된 심전도, 근전도, 뇌전도 신호의 압축률은 향후 압축센싱을 적용한 무선 생체신호 모니터링 회로 및 시스템 개발시 유용한 기초자료로 활용될 수 있다.

이진 희소 신호의 L0 복원 성능에 대한 상한치 (Upper Bound for L0 Recovery Performance of Binary Sparse Signals)

  • 성진택
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.485-486
    • /
    • 2018
  • In this paper, we consider a binary recovery framework of the Compressed Sensing (CS) problem. We derive an upper bound for $L_0$ recovery performance of a binary sparse signal in terms of the dimension N and sparsity K of signals, the number of measurements M. We show that the upper bound obtained from this work goes to the limit bound when the sensing matrix sufficiently become dense. In addition, for perfect recovery performance, if the signals are very sparse, the sensing matrices required for $L_0$ recovery are little more dense.

  • PDF

Support 검출을 통한 reweighted L1-최소화 알고리즘 (Reweighted L1-Minimization via Support Detection)

  • 이혁;권석법;심병효
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.134-140
    • /
    • 2011
  • 압축 센싱 (Compressed Sensing) 기술을 통해 $M{\times}N$ 측정 행렬의 원소들이 특정의 독립적인 확률 분포에서 뽑혀 identically 분포의 성질을 가지고 있을 때 $M{\ll}N$의 경우에도 스파스 (sparse) 신호를 높은 확률로 정확하게 복원할 수 있다. $L_1$-최소화 알고리즘이 불완전한 측정에 대해서도 스파스 (sparse) 신호를 복원할 수 있다는 것은 잘 알려진 사실이다. 본 논문에서는 OMP를 변형시킨 support 검출과 가중치 기법을 이용한 $L_1$-최소화 방법을 통하여 스파스 (sparse) 신호의 복원 성능을 향상시키는 알고리즘을 제안하고자 한다.

시간 상관관계를 이용한 분산 압축 비디오 센싱 기법의 복원 화질 개선 (Reconstructed Iimage Quality Improvement of Distributed Compressive Video Sensing Using Temporal Correlation)

  • 류중선;김진수
    • 한국산업정보학회논문지
    • /
    • 제22권2호
    • /
    • pp.27-34
    • /
    • 2017
  • 가장 간단한 샘플링을 위한 목적으로 SPL (Smoothed Projected Landweber)기법 기반의 움직임 보상 블록 압축센싱 기법이 모든 센싱 프레임들에 대해 분산 압축 비디오 센싱 기술이 적용되는 효과적인 방안으로 연구되어 오고 있다. 그러나 기존의 움직임 보상 블록기반의 압축센싱 기법은 매우 간단하여 복원된 위너-지브 프레임에서 우수한 화질을 제공하지 못하는 한계점이 있다. 본 논문에서는 기존의 움직임 보상 블록기반의 압축센싱 기법을 이용한 위너-지브 프레임에서 우수한 화질을 제공될 수 있도록 알고리즘을 변형한다. 즉, 제안된 알고리즘은 참조 프레임이 연속적인 프레임들에 있어 시간적 상관관계에 기초해서 적응적으로 선택되도록 하는 방법으로 설계된다. 다양한 실험 결과를 통하여 제안한 알고리즘은 기존의 알고리즘에 비해 우수한 화질을 제공할 수 있음을 확인한다.

Compressed Channel Feedback for Correlated Massive MIMO Systems

  • Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.95-104
    • /
    • 2016
  • Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.

Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence

  • Chae Jung Park;Jihoon Cha;Sung Soo Ahn;Hyun Seok Choi;Young Dae Kim;Hyo Suk Nam;Ji Hoe Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • 제21권12호
    • /
    • pp.1334-1344
    • /
    • 2020
  • Objective: Compressed sensing (CS) has gained wide interest since it accelerates MRI acquisition. We aimed to compare the 3D post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition (VISTA) with CS (VISTA-CS) and without CS (VISTA-nonCS) in intracranial vessel wall MRIs (VW-MRI). Materials and Methods: From April 2017 to July 2018, 72 patients who underwent VW-MRI, including both VISTA-CS and VISTA-nonCS, were retrospectively enrolled. Wall and lumen volumes, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured from normal and lesion sites. Two neuroradiologists independently evaluated overall image quality and degree of normal and lesion wall delineation with a four-point scale (scores ≥ 3 defined as acceptable). Results: Scan coverage was increased in VISTA-CS to cover both anterior and posterior circulations with a slightly shorter scan time compared to VISTA-nonCS (approximately 7 minutes vs. 8 minutes). Wall and lumen volumes were not significantly different with VISTA-CS or VISTA-nonCS (interclass correlation coefficient = 0.964-0.997). SNR was or trended towards significantly higher values in VISTA-CS than in VISTA-nonCS. At normal sites, CNR was not significantly different between two sequences (p = 0.907), whereas VISTA-CS provided lower CNR in lesion sites compared with VISTA-nonCS (p = 0.003). Subjective wall delineation was superior with VISTA-nonCS than with VISTA-CS (p = 0.019), although overall image quality did not differ (p = 0.297). The proportions of images with acceptable quality were not significantly different between VISTA-CS (83.3-97.8%) and VISTA-nonCS (75-100%). Conclusion: CS may be useful for intracranial VW-MRI as it allows for larger scan coverage with slightly shorter scan time without compromising image quality.

멀티콥터의 효율적 멀티미디어 전송을 위한 이미지 복원 기법의 성능 (Performance of Image Reconstruction Techniques for Efficient Multimedia Transmission of Multi-Copter)

  • 황유민;이선의;이상운;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.104-110
    • /
    • 2014
  • 본 논문에서는 무인항공기인 방송용 멀티콥터를 이용한 Full-HD급 이상 화질의 이미지를 효율적으로 전송하기 위해 이미지 압축 센싱 기법을 적용하고, Sparse 신호의 효율적 복원을 위해 Turbo 알고리즘과 Markov chain Monte Carlo (MCMC) 알고리즘의 복원 성능을 모의실험을 통해 비교 분석하였다. 제안된 복원 기법은 압축 센싱에 기반하여 데이터 용량을 줄이고 빠르고 오류 없는 원신호 복원에 중점을 두었다. 다수의 이미지 파일로 모의실험을 진행한 결과 Loopy belief propagation(BP) 기반의 Turbo 복원 알고리즘이 Gibbs sampling기반 알고리즘을 수행하는 MCMC 알고리즘 보다 평균 복원 연산 시간, NMSE 값에서 우수하여 보다 효율적인 복원 방법으로 생각된다.

An Efficient Model Based on Smoothed ℓ0 Norm for Sparse Signal Reconstruction

  • Li, Yangyang;Sun, Guiling;Li, Zhouzhou;Geng, Tianyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2028-2041
    • /
    • 2019
  • Compressed sensing (CS) is a new theory. With regard to the sparse signal, an exact reconstruction can be obtained with sufficient CS measurements. Nevertheless, in practical applications, the transform coefficients of many signals usually have weak sparsity and suffer from a variety of noise disturbances. What's worse, most existing classical algorithms are not able to effectively solve this issue. So we proposed an efficient algorithm based on smoothed ${\ell}_0$ norm for sparse signal reconstruction. The direct ${\ell}_0$ norm problem is NP hard, but it is unrealistic to directly solve the ${\ell}_0$ norm problem for the reconstruction of the sparse signal. To select a suitable sequence of smoothed function and solve the ${\ell}_0$ norm optimization problem effectively, we come up with a generalized approximate function model as the objective function to calculate the original signal. The proposed model preserves sharper edges, which is better than any other existing norm based algorithm. As a result, following this model, extensive simulations show that the proposed algorithm is superior to the similar algorithms used for solving the same problem.