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Abstract 
 

Compressed sensing (CS) is a new theory. With regard to the sparse signal, an exact 
reconstruction can be obtained with sufficient CS measurements. Nevertheless, in practical 
applications, the transform coefficients of many signals usually have weak sparsity and suffer 
from a variety of noise disturbances. What's worse, most existing classical algorithms are not 
able to effectively solve this issue. So we proposed an efficient algorithm based on smoothed 
ℓ0 norm for sparse signal reconstruction. The direct ℓ0 norm problem is NP hard, but it is 
unrealistic to directly solve the ℓ0 norm problem for the reconstruction of the sparse signal. To 
select a suitable sequence of smoothed function and solve the ℓ0 norm optimization problem 
effectively, we come up with a generalized approximate function model as the objective 
function to calculate the original signal. The proposed model preserves sharper edges, which is 
better than any other existing norm based algorithm. As a result, following this model, 
extensive simulations show that the proposed algorithm is superior to the similar algorithms 
used for solving the same problem. 
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1. Introduction 

In recent years, the research of compressed sensing(CS) [1-2] has received more attention as a 
mean to process the sparse signal (i.e., the number of nonzero elements in the vector is small). 
CS is a new signal processing technology, by solving underdetermined linear systems, to 
effectively acquire and reconstruct the signal. It was proposed by Donoho, Candes and Tao 
Zhexuan in 2006. It is very magical that CS theory can exactly recover the sparse signal or 
compressible signals by a sampling rate which does not satisfy the Nyquist–Shannon sampling 
theorem. But many papers have demonstrated that CS can effectively get the key information 
from sample value with fewer non-correlative measurements. The key advantage of CS is that 
it allows both compression and sampling to run simultaneously. CS technique can reduce the 
hardware requirements, further reduce the sampling rate, improve the signal quality, save on 
signal processing and transmission costs. Currently, CS has been widely used in wireless 
sensor networks, information theory, signal processing, medical image, optical/microwave 
imaging, SAR image, wireless communications, atmosphere, geology and other fields [3-5].  

The research of CS theory is mainly divided into three aspects: 1) the sparse representation 
of signals; 2) the uncorrelated sampling[6]; 3) sparse reconstruction [7]. The design of sparse 
reconstruction algorithm is the most important one. It is the huge challenge for the researchers 
to propose an efficient reconstruction algorithm with reliable accuracy. 

 Theoretically, under the condition of sparse assumption, one hope to reconstrct the 
signal Nx R∈ , for example, My R∈ is a known vector. For the reconstruction of the sparse 
signal x , which can be solved through the following non-convex problem:   

                                                
0

       . .min x s t y x= Φ .                                               (1) 

Where 
0

x is the zero-norm of the x . M NR ×Φ∈ is the measurement matrix. The above 
formula (1) is NP-hard. To solve the issue of formula (1), we have to get a solution with the 
least non-zero elements in all solutions. It is not practical to directly solve that problem. This 
paper has proved that if the measurement matrix obeys a constraint known as the Restricted 
Isometry Property(RIP) [8-10], an equivalent solution can be get for the optimization problem 
(1) based on ℓ1 norm. With regard to the measurement matrix Φ , it considers the sparse signal 
x  (

0
x k= ), when find a suitable constant kδ satisfies: 

                                               2 2 2

2 2 2
1 1( ) ( )k kx x xδ δ− ≤ Φ ≤ + .                                           (2) 

In (2), kδ follows 0 1kδ< ≤ . Generally speaking, if the kδ is very closed to 1, then it is 

possible that the measurement y  can not preserve any information on x  when the 2

2
0xΦ ≈ . 

As a result, it is nearly impossible to reconstruct the sparse signal x  by using the greedy 
algorithms.  

If RIP is satisfied, the solution based on the ℓ1 norm problem is the convex relaxation of the 
ℓ0 norm: 
                                                         

1
      min x s.t. y x= Φ .                                                    (3) 

For (3), Many existing methods can solve this issue. Equation (3) is a convex problem, and the 
methods to solve equation (3) is called a convex optimization algorithm [11], such as the basis 
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pursuit algorithm (BP) [12]. and linear programming algorithm. But this kind of algorithm has 
high computational complexity.  

 A series of greedy algorithms has been receiving great interest due to their low complexity 
and simple geometric interpretation, such as the Orthogonal Matching Pursuit (OMP)[13], the 
Stagewise OMP (StOMP)[14] algorithms, and stagewise weak gradient pursuits 
(SWOMP)[15]. The feature of those algorithms is to seek the sparse position of the unknown 
signal step by step. And the smoothed ℓ0 norm algorithms have also recevied significant 
attention, such as the SL0 algorithm, Thresholded SL0(TSL0)[16]. The simulation for typical 
reconstruction problems, including one-dimensional and two-dimensional signal 
reconstruction, show that the proposed model is superior to the existing advanced 
reconstruction algorithms. But Anti-noise performance of the greedy algorithms is poor. Even 
small additive noise is likely to lead to the bad signal recovery effect.  

In a sense, the ℓ0 norm is robust to noise, it gives the highest possibility of sparse 
reconstruction with fewer measurements. That also motivates the use of continuous 
approximate function to solve (1).  

 We introduce an efficient algorithm based on smoothed ℓ0 norm for sparse signal 
reconstruction in this paper. To design an suitable iterative sequence of smoothed function and 
get an optimized solution of the ℓ0 norm problem, we also come up with a generalized 
approximate function model as the objective function to calculate the original signal. The 
proposed model preserves sharper edges, which is better than any other existing norm 
regulized algorithm. The results of experiment verified that the new algorithm based on the 
generalized approximate function model is better than other similar algorithms used for 
solving the same problem. 

 Other parts of this paper is arranged as follows. Part 2 introduces the basic ideas of the 
proposed algorithm. Part 3, we discuss the procedure of the new algorithm. Part 4 is simulation 
result and analysis, and the last part is the conclusion. 

2. Main Idea 
The fundamental idea of CS theory is to extract vector x  from y . To solve the issue of ℓ0  

norm of discontinuity, the existing idea is to approximate this discontinuous function by a 
suitable continuous one. And there are many kinds of approximations smooth function. For 
example, the most classic Gaussian Function. But this paper proposed a generalized 
approximate function model, and it has a more accurate approximation effect. 

                                                    
2 2 2 2

2 2 2 2( )
x x

x x

e ef x
e e

β σ β σ

σ β σ β σ

−

−

−
=

+
 .                                                 (4) 

In (4), β  represents a positive number. The parameter σ  determines the reconstructed 
quality of the sparse signal x  by the approximations smooth function. The smaller σ , the 
better approximation, and the lager σ , the smoother approximation. And note that: 

                                                 
0

  1 ;    0 
  0 ;    0

lim ( )
if x

f x
if xσσ→

≠
=  =

 .                                              (5) 

Or approximately that: 

                                                       
 1 ;   
 0 ;  

( )
if x

f x
if xσ

σ
σ


= 






   .                                                (6) 
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Then we can define: 

                                                      
0 1

lim ( ) ( )
N

i
i

F x f xσ σσ→
=

=∑  .                                                     (7) 

It can be learned from the above formula that 
0

( )x F xσ= . In this paper [17], it considers the 
continuous Gaussian function for the smoothed approximations. 
                                                            

2 22( ) xg x e σ
σ

−=  .                                                         (8) 
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Fig. 1. Comparison of the approximate ℓ0 norm functions 

 

For (4) (8), the approximation performance of ℓ0 norm, however, is different. To further 
prove the superiority of the proposed generalized approximation model as a smooth 
continuous approximation function, we have experimentally compared the distribution of the 
proposed generalized approximate function with the standard Gaussian function for different 
parameters β  at interval [-1, 1] when 0 1.σ = . The comparison results are shown in Fig. 1.  

As can be seen from the Fig. 1, the proposed generalized approximate function model has 
steeper properties. Therefore, it would be more precise to estimate the ℓ0 norm. 

Remark 1. When β > 0.5, the generalized approximation function model proposed in this 
paper has a better approximation than other models. It can be proved by comparison with 
standard gaussian function.  

Proof of remark 1: Take 1( ) ( ) ( ( ))u x f x g x= − − , when β > 0.5, 0( )u x ≥ . To simplify the 
proof, let 2/β α= . 
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Introduce auxiliary function ( )h x : 

                                      

2 2 2 2

2 2 2 2

2 1 2 2

1 1 2

2

        2 2 2 1

( )

( ) ( )

( )

( )

x x

x x

h x e e

e e

α σ σ

α σ α σ

− −

− −

= + −

≥ − ≥ −  .                        (10) 

In (10), when 1α >  (i.e. 0 5.β > ), 0( )u x > , which completes the proof. In summary, if 
0 5.β > , then the proposed generalized approximate function model is steeper between the  

-0.2 and 0.2. So the approximation of the ℓ0 norm is more efficient. Furthermore, it's easy to 
see that when β  gets bigger, the better the effect of function approximation will be. But β  
is not infinitely large, and it usually achieves the perfect result between 1 and 10.  

3. The Proposed Algorithm 
In this part, we introduce the proposed generalized approximations model to solve the sparse 
signal reconstruction problem and give the mathematical analysis. At the same time, the 
improved quasi-newton method is used as the target search direction to strongly accelerate the 
convergence speed. Finally, we design a novel reconstruction algorithm to recover the original 
signal. 

From (7), the minimization of the ℓ0 norm is equivalent to the minimization of ( )F xσ  for 
sufficiently small σ . 

                                                          ( ), . .min F x s t y xσ = Φ  .                                       (11) 

Many algorithms can be used to solve equation (11), the most representative of which is the 
steepest descent method. The steepest descent, however, has a severe notched effect, which 
can seriously affect the convergence speed of the algorithm. Therefore, we use the improved 
Newton method to solve this problem. First, the Newton direction is calculated according to 
the generalized approximation function model 

                                                      2 1( ) ( )d F x F xσ σ
−= −∇ ∇  .                                          (12) 
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Where 
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In order to make sure that Newton direction is a descent direction, the matrix 2 ( )F xσ∇  

must be a positive definite matrix. So the matrix 2 ( )F xσ∇  should be improved. Then, we can 
set up a new matrix: 

                                                        2 ( )G F x Iσ ε= ∇ + .                                             (15) 

Where I is the identity matrix, ε is a suitable set of improvement coefficients, and the 
diagonal elements are positive in matrix G . For example, from (14), we can choose ε  
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as the improvement coefficients. Then matrix G can be shown as  

                                            

1
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So, it can be obtained that  

                                   

1

2 2 2
1 2

2 2 2 2 2 2
1 2

   =

( )

, , ,
T

N

N

d G F x

x x x
x x x

σ

σ σ σ
σ β σ β σ β

−= − ∇

 − − −
 + + + 



 .                     (19) 

And in general, parameter σ is chosen as 1k kσ ϕσ −= , k=2, 3, …., K, and 0 4 1( . , )ϕ ∈ . Let 

1
†( )xmax yσ = Φ . †

xΦ is the Moore-Penrose Pseudoinverse [18] of Φ . 

                                                        1† ' '( )x x x x
−Φ = Φ Φ Φ  .                                            (20) 

Using the above derivation, the main steps of using the generalized approximate function 
model proposed in this paper to reconstruct sparse signals are shown in Table 1. The 
corresponding algorithm is called gSL0. In the follwing section, we give a detailed 
comparison and description between our new algorithm and existing excellent algorithms. 

We first initialize the following parameters: minσ (the minimum value of  minσ  that should 
be a very small positive mumber),  L (the number of iterations for decreasing kσ ). x̂  (the 
initial solution that can be obtained using pseudo-inverse which has the minimum ℓ2 norm and 
corresponds to σ →∞ ).  

 
Table 1.  The proposed gSL0 Algorithm 

Input: Sensing matrixΦ , measurement vector y , 1k = . 
Initialization parameter minσ , †ˆ xx y= Φ ; 

While minkσ σ>  
1) Let 1  0 4 1( ( . , ))k kσ ϕσ ϕ−= ∈ ; 
2) Minimize the generalized approximate function 

model ( )F xσ  on the feasible set x̂ , 1v . using L 
inner iterations of the improved Newton 
direction method (followed by projection onto 
the feasible set). 

3) 1k k= + : 
Inner iteration: 
--- Initialization 1kx v −= ; 
---for 1i L=  (loop L times): 

a) Let: x d∆ = , x x xη← + ∆ ( 0 1( , )η ∈ ); 
b) Project x back onto the feasible set x̂ : 

1( ) ( )T Tx x x y−← −Φ ΦΦ Φ −   
4) Set kv x= . 

Final answer is kx v= . 

4. Experimental Results and Analysis 
In this part, some experiments are carried out for illustrating the performance of the proposed 
gSLO algorithm. The measurement matrix Φ  is acquired by extracting the random matrix M  
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rows of the N×N dimension. The proposed gSL0 model is contrasted with the latest greedy 
algorithms such as OMP, StOMP, and SWOMP and with the smooth ℓ0 norm algorithm such 
as SL0, ASL0, and TSL0 in the aspects of signal reconstruction and image reconstruction. 
With no exception, the whole experiments are realized, in Matlab 2014a of PC which contain 
3.2 GHZ Intel Core i5 processor and 8.0 GB running memory Windows 7 system.  
Experiment 1: One-dimensional Signal.  

In this experiment, the Gaussian random sparse signal length and noise interference are 
respectively set to N=256 and Gaussian white noise. A large number of simulations are 
proceeded to compare the reconstruction capabilities among different reconstruction 
algorithms. In view of randomness of the proposed model, all the simulation results are gained 
from averaged results of 1,000 independent tests results. For checking the proposed 
algorithm’s performances for signal reconstruction, the reconstruction effects are estimated by 
exact reconstruction probability, averaged running time, and reconstructed relative error(Re). 

In the first simulation, we fix sparsity K=20 and N=256 (signal length) and the 
measurement number M varies between 40 and 100. According to the exact reconstruction rate, 
the 7 different algorithms are estimated in the aspect of reconstruction which is presented in 
Fig. 2. We can find the proposed algorithm gSL0 in this paper which possesses a better 
reconstructed rate with regard to the different measurements. gSL0 also obviously precedes 
the most advanced greedy algorithms while the measurement number is greater then 60. 
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Fig. 2. In gaussian noise, reconstruction performance of gSL0, OMP, StOMP, SWOMP, SL0, TSL0 

and ASL0 with the measurement number changing from 40 to 100. 
 

In the second simulation, we fix N=256 and M=80 and the sparsity level K varies between 
10 and 45. Fig. 3 shows the experimental results of different algorithms. It shows those 
algorithm’s recovery probability under different sparsity level. We can find that the proposed 
algorithm can reconstruct the sparse signal with higher precision for different sparsity. And we 
can know that gSL0 performs much better than the other five algorithms in exact 
reconstruction rate in Fig. 3.  
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In the thrid simulation, we set N=256 and sparsity K=20 respectively and the measurement 
M varies between 40 and 100. From the Fig. 4, the simulation result shows that the average 
running time of gSL0 changes slowly with the increase of the sampling data. Considering the 
average running time of the different algorithms, we see that gSL0 performs relatively fast in 
the case of large measurement number. Since TSL0 introduces the mechanism of threshold 
selection to accelerate the inner iteration. We can also find that TSL0 is fatser than the 
proposed gSL0 in Fig. 4. However, we can learn that the reconstruction effect of TSL0 under 
noisy is very bad from Fig. 2 and Fig. 3. 
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Fig. 3. Simulations for Gaussian sparse signals with Gaussian noise. The probability of exact 

reconstruction with different sparsity level. 
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Fig. 4. In gaussian noise, average running time of gSL0, OMP, StOMP, SWOMP, SL0, TSL0 and 

ASL0 with the measurement number varies between  40 and 100 for the fixed N=256, K=20. 
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Finally, the relative error of one-dimensional signal reconstruction is defined as follows: 

                                                         
2

Re
x x

x
−

=


.                                                            (21) 

 Obviously, the Re is lower, the effect of signal reconstruction will be better. 
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Fig. 5. reconstruction relative error of gSL0, SWOMP. 

 

We can learn from Fig. 5 that the Re of gSL0 is lower. It is to say that the proposed 
algorithm can more accurately reconstruct the original signal. 
Experiment 2: Algorithm Performances Comparison of Image Reconstrction.  

In this part, to verify the effectiveness of the proposed algorithm, three standard images, i.e. 
Lena image, Camera image and Boat image, are adopted as the input to conduct the 
comparison analysis of different algorithms. Furthermore, the peak signal-to-noise ratio 
(PSNR) is employed in this paper to evaluate the reconstruction performance of each 
algorithm, which  measures the quality of reconstruction of sparse codes  and is defined as   
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2

10
2

25510 log M NPSNR
x x

 × ×
=   − 

  .                                         (22) 

The measurement matrix Φ  is acquired by extracting the random matrix M rows of the 
N×N dimension. Sampling ratio is M / N=0.42. The size of each image is 256×256. The 
reconstruction effects are estimated by PSNR, Re, averaged running time and visual effects of 
reconstruction. The mean values of the PSNR, Re and Time over 20 independent tests are 
given in Table 2. We can see the reconstruction effects of different algorithms on 
two-dimensional images in Fig. 6. 

 

 

 

 
Fig. 6. The quality of the reconstruction with different algorithms in different images. 

 

From Fig. 6, we can learn that the proposed gSL0 is better than other algorithms (SL0, 
ASL0, OMP) in the PSNR of the reconstructed image. And we can see that the gSL0 algorithm 
has better reconstruction effect for different kinds of images. So the gSL0 algorithm can 
accurately recover the original signal.  

The reconstruction relative error of two-dimensional signal is defined as follows: 

                                                                          2

2

Re
x x

x
−

=


.                                                                                (23) 
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Table 2. Reconstruction effect of SL0, ASL0, OMP, SWOMP and 
the proposed gSL0 for different images, each image with the fixed measurement rate 0.4 (M / N). 

Image Algorithm PSNR(dB) Re Time(s) 

Lena 

SL0 
ASL0 
OMP 

SWOMP 
gSL0 

38.53 
39.38 
17.20 
18.53 
39.57 

0.030 
0.027 
0.348 
0.298 
0.026 

0.44 
0.69 
7.81 
0.35 
0.38 

Camera 

SL0 
ASL0 
OMP 

SWOMP 
gSL0 

35.04 
35.59 
12.70 
12.28 
35.90 

0.036 
0.034 
0.472 
0.496 
0.034 

0.44 
0.69 
8.08 
0.35 
0.38 

Boat 

SL0 
ASL0 
OMP 

SWOMP 
gSL0 

34.68 
34.88 
14.46 
30.18 
35.10 

0.045 
0.044 
0.465 
0.076 
0.043 

0.45 
0.71 
8.92 
0.37 
0.39 

      From Table 2, it shows that the proposed gSL0 algorithm can achieve the best 
reconstruction performance in PSNR and Re of all test images. However, we also can find that 
the speed of reconstruction is a little slower than SWOMP.  As we can see from Fig. 6 and 
Table 2, the proposed algorithm gSL0 precedes the most advanced algorithms in the aspect of 
image reconstruction. 

5. Conclusion 
In this paper, we proposed a generalized approximate function model to reconstruct ℓ0 norm 
and design the gSL0 algorithm based on the proposed generalized model. To accelerate the 
convergence, we use the improved Newton direction as the search direction. Through the 
proof and simulation, we can get that the generalized approximate model has better “steep 
nature” and the estimation of the ℓ0 norm is more precise. The extensive test results show that 
the proposed model has a good recovery effect not only for the one-dimensional signal but also 
for the two-dimensional image. The proposed gSL0 is compared with some known algorithms 
based on a smoothed ℓ0 norm and existing excellent greedy algorithms, it has a high probability 
of reconstruction and faster reconstruction, even with Gaussian white noise. State-of-the-art 
reconstruction effect is achieved by the gSL0 algorithm for different images. 
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