• 제목/요약/키워드: composite laminated plate

검색결과 398건 처리시간 0.021초

Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates

  • Basha, Muhammad;Daikh, Ahmed Amine;Melaibari, Ammar;Wagih, Ahmed;Othman, Ramzi;Almitani, Khalid H;Hamed, Mostafa A.;Abdelrahman, Alaa;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.639-660
    • /
    • 2022
  • The bending and buckling behaviours of FG-GRNC laminated sandwich plates are investigated by using novel five-variables quasi 3D higher order shear deformation plate theory by considering the modified continuum nonlocal strain gradient theory. To calculate the effective Young's modulus of the GRNC sandwich plate along the thickness direction, and Poisson's ratio and mass density, the modified Halpin-Tsai model and the rule of the mixture are employed. Based on a new field of displacement, governing equilibrium equations of the GRNC sandwich plate are solved using a developed approach of Galerkin method. A detailed parametric analysis is carried out to highlight the influences of length scale and material scale parameters, GPLs distribution pattern, the weight fraction of GPLs, geometry and size of GPLs, the geometry of the sandwich plate and the total number of layers on the stresses, deformation and critical buckling loads. Some details are studied exclusively for the first time, such as stresses and the nonlocality effect.

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 좌굴 해석연구 (Buckling Analysis of Laminated Composite Plates Longitudinally Stiffened with U-Shaped Ribs)

  • 최병호;최수영;박상균
    • 복합신소재구조학회 논문집
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 2012
  • 압축을 받는 복합적층판의 보강을 위해 폐단면리브를 적용하는 것이 효과적이나, 적정 크기나 최적 두께에 대한 충분한 연구자료가 제시되지 못하고 있다. 이에 따라 폐단면리브 단면 제원에 따른 복합적층판의 압축좌굴 거동에 대한 영향이 우선 검토되어야 할 필요성이 있다. 본 논문에서는 직교이방성 $[(0^{\circ})_4]_s$와 Cross-ply $[(0^{\circ}/90^{\circ})_2]_s$ 적층단면을 각각 고려하여 U리브 단면강성에 따른 복합적층 보강판의 탄성좌굴강도 및 좌굴모드의 변화를 수치해석적으로 검토하였다. 구조부재로써 적용성을 고려하여 U리브 단면 모델을 선정하였고 유한요소해석 프로그램인 ABAQUS를 이용하여 U리브 적층두께에 따른 고유치 해석을 실시하였다. U리브와 같은 폐단면 보강재를 적용한 복합적층판에서는 단순지지 조건의 판좌굴 강도에 비해 상승효과가 있음이 본 연구의 수치해석 결과로부터 입증되었으며 본 해석연구 대상 모델에 대해 U리브 최적 적층두께를 분석하였다. 본 논문의 연구 결과는 향후 U리브의 최적 단면 선정방안을 제시하는데 기여할 수 있을 것으로 기대된다.

적층된 ACM 경사판의 기하학적 비선형 동적 해석 (Geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials)

  • 이상열;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.28-34
    • /
    • 2010
  • W e performed a geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (ACM ) based on the first-order shear deformation plate theory (FSDT). The Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of skew angles and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite and skew plates, and the new results reported in this paper show the significant interactions between the skew angle and layup sequence in the skew laminate. Key observation points are discussed and a brief design guideline is given.

  • PDF

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

Thermal buckling analysis of thick anisotropic composite plates by finite strip method

  • Cheung, M.S.;Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.473-484
    • /
    • 1999
  • In the present study, the thermal buckling analysis of thick anisotropic laminated composite plates is carried out using the finite strip method based on the higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. Therefore, this theory yields improved results over the Mindlin plate theory and eliminates the need for shear correction factors in calculating the transverse shear stiffness. The critical temperatures of simply supported rectangular cross-ply and angle-ply composite laminates are calculated. The effects of several parameters, such as the aspect ratio, the length-to-thickness ratio, the number of plies, fibre orientation and stacking sequence, are investigated.

소형 선박용 복합재료 축 설계를 위한 음력해석에 관한 연구 (A Study on the Stress Analysis for Design of Composite Material Shafts of Small Boats)

  • 김윤해;임철문;배창원;왕지석
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.308-313
    • /
    • 2002
  • It is known that the composite material shafts using on small boats have various advantages comparing to forged steel shafts, fur examples, specific strength, fatigue strength, corrosion, etc. The analysis of the stresses and strains in the composite material shafts made by filament winding method is presented in this paper. The classical laminated plate theory is applied on the patch cut from the composite material hollow shafts. It is verified that the composite material hollow shafts of diameter 40 mm is the most optimum when the ratio of the inner diameter to the outer is 0.4 and winding angle is 45$^{\circ}$. It is also proven that the shear strain does not change seriously between 30$^{\circ}$and 60$^{\circ}$of winding angles. It is dangerous when the winding angle is over 75$^{\circ}$because the values of shear strain and stress produced on the shaft are too high so it must be avoided to wind the filament by the angle over 75$^{\circ}$.

실험 모드해석을 이용한 균열 적층복합판의 손상평가 (Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.399-410
    • /
    • 2012
  • 본 연구에서는 실험적 모드해석 기법을 이용하여 캔틸레버 및 양단고정 직사각형 적층복합판의 동적 테스트가 수행되었다. 균열 성장으로 인한 손상평가를 위하여 적층복합판에 인위적인 단계별 손상(균열)을 가하였으며, 충격해머 모드실험에 의해 얻어진 주파수응답함수(FRF), MAC(Modal Assurance Criterion) 값 및 모드매개변수(진동수, 모드형상, 감쇠비)의 변화를 분석하였다. 각 단계별 손상에 대한 적층복합판의 실험적 모드매개변수를 검증하기 위하여 유한요소해석으로부터 구한 고유진동수와 모드형상을 비교하였다. 손상은 벤치마크로서의 유한요소모델을 보정하는 과정으로부터 얻게 되는 적층복합판의 기하학적 특성 및 구조적 거동의 변화를 통하여 평가될 수 있음을 보여주었다.

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

Cylindrical bending of multilayered composite laminates and sandwiches

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • 제3권2호
    • /
    • pp.113-148
    • /
    • 2016
  • In a whole variety of higher order plate theories existing in the literature no consideration is given to the transverse normal strain / deformation effects on flexural response when these higher order theories are applied to shear flexible composite plates in view of minimizing the number of unknown variables. The objective of this study is to carry out cylindrical bending of simply supported laminated composite and sandwich plates using sinusoidal shear and normal deformation plate theory. The most important feature of the present theory is that it includes the effects of transverse normal strain/deformation. The displacement field of the presented theory is built upon classical plate theory and uses sine and cosine functions in terms of thickness coordinate to include the effects of shear deformation and transverse normal strain. The theory accounts for realistic variation of the transverse shear stress through the thickness and satisfies the shear stress free conditions at the top and bottom surfaces of the plate without using the problem dependent shear correction factor. Governing equations and boundary conditions of the theory are obtained using the principle of minimum potential energy. The accuracy of the proposed theory is examined for several configurations of laminates under various static loadings. Some problems are presented for the first time in this paper which can become the base for future research. For the comparison purpose, the numerical results are also generated by using higher order shear deformation theory of Reddy, first-order shear deformation plate theory of Mindlin and classical plate theory. The numerical results show that the present theory provides displacements and stresses very accurately as compared to those obtained by using other theories.