References
- Afshin, M., Sadighi, M. and Shakeri, M. (2010), "Static analysis of cylindrical sandwich panels with a flexible core and laminated composite face sheets", J. Compos. Mater., 44, 1455-1476. https://doi.org/10.1177/0021998309359215
- Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and anti-symmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26, 1907-1 919. https://doi.org/10.1177/0731684407081766
- Alibeigloo, A. and Shakeri, M. (2009), "Elasticity solution for static analysis of laminated cylindrical panel using differential quadrature method", Eng. Struct., 31, 260-267. https://doi.org/10.1016/j.engstruct.2008.08.012
- Ambartsumian, S.A. (1958), "On the theory of bending plates", Izv Otd Tech Nauk SSSR, 5, 69-77.
- Auricchio, F. and Sacco, E. (2003), "Refined first-order shear deformation theory models for composite laminates", J. Appl. Mech., 70, 381-390. https://doi.org/10.1115/1.1572901
- Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89(1), 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008
- Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Bedia, E.A.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
- Carrera, E., Brischetto, S. and Robaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46(1), 194-203. https://doi.org/10.2514/1.32490
- Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures: Classical and Advanced Theories, John Wiley & Sons Inc., New York.
- Carrera, E. (1999a), "A study of transverse normal stress effect on vibration of multilayered plates and shells", J. Sound Vib., 225(5), 803-829. https://doi.org/10.1006/jsvi.1999.2271
- Carrera, E. (2002), "Theories and finite elements for multilayered anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. (2003), "Theories and finite elements for multilayered anisotropic, composite plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 216-296.
- Carrera, E. (2005), "Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates", AIAA J., 43(10), 2232-2242. https://doi.org/10.2514/1.11230
- Carrera, E. (1999b), "Transverse normal stress effects in multilayered plates", J. Appl. Mech., 66(4), 1004-1012. https://doi.org/10.1115/1.2791769
- Chen, W.Q. and Lee, K.Y. (2005), "State-space approach for statics and dynamics of angle-ply laminated cylindrical panels in cylindrical bending", Int. J. Mech. Sci., 47, 374-387. https://doi.org/10.1016/j.ijmecsci.2005.01.009
- Ghugal, Y.M. and Sayyad, A.S. (2011), "Stress analysis of thick laminated plates using trigonometric shear deformation theory", Int. J. Appl. Mech., 5, 1-23.
- Ghugal, Y.M. and Sayyad, A.S. (2013), "Cylindrical bending of thick orthotropic plates using trigonometric shear deformation theory", Int. J. Appl. Math. Mech., 7(5), 98-116.
- Ghugal, Y.M. and Shinde, S.B. (2013), "Flexural analysis of cross-ply laminated beams using layerwise trigonometric shear deformation theory", Lat. Am. J. Solids Struct., 10, 675-705. https://doi.org/10.1590/S1679-78252013000400002
- Ghugal, Y.M. and Shinde, S.B. (2014), "Static flexure of thick cross-ply laminated beams using layerwise theory", Int. J. Appl. Math. Mech., 10(3), 15-31.
- He, J.F. (1992), "Cylindrical bending of arbitrary cross-ply laminated plates", Compos. Struct., 21, 67-74. https://doi.org/10.1016/0263-8223(92)90041-A
- Jalali, S.J. and Taheri, F. (1998), "An analytical solution for cross-ply laminates under cylindrical bending based on through-the-thickness inextensibility, Part I-static loading", Int. J. Solid. Struct., 35, 1559-1574. https://doi.org/10.1016/S0020-7683(97)00126-1
- Kant, T. and Shiyekar, S.M. (2008), "Cylindrical bending of piezoelectric laminates with a higher order shear and normal deformation theory", Comput. Struct., 86, 1594-1603. https://doi.org/10.1016/j.compstruc.2008.01.002
- Kapuria, S. and Kumari, P. (2011), "Extended Kantorovich method for three-dimensional elasticity solution of laminated composite structures in cylindrical bending", J. Appl. Mech., 78, 1-8.
- Karama, M., Afaq, S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40, 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Khdeir, A.A. (2001), "Free and forced vibration of antisymmetric angle-ply laminated plate strips in cylindrical bending", J. Vib. Control, 7, 781-801. https://doi.org/10.1177/107754630100700602
- Kruszewski, E.T. (1949), "Effect of transverse shear and rotatory inertia on the natural frequency of a uniform beam", NACA Tech. Note No. 1909, Washington, D. C., USA.
- Lebee, A. and Sab, K. (2011), "A Bending-Gradient model for thick plates, Part II: Closed-form solutions for cylindrical bending of laminates", Int. J. Solid. Struct., 48, 2889-2901. https://doi.org/10.1016/j.ijsolstr.2011.06.005
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A higher order theory for plate deformations, Part 1: Homogeneous plates", J. Appl. Mech., 44, 663-668. https://doi.org/10.1115/1.3424154
- Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A higher order theory for plate deformations, Part 2: Laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
- Lu, C.F., Huang, Z.Y. and Chen, W.Q. (2007), "Semi-analytical solutions for free vibration of anisotropic laminated plates in cylindrical bending", J. Sound Vib., 304, 987-995. https://doi.org/10.1016/j.jsv.2007.03.023
- Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solid. Struct., 49, 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2011), "Bending of FGM plates by a sinusoidal plate formulation and collocation with radial basis functions", Mech. Res. Commun., 38, 368-371. https://doi.org/10.1016/j.mechrescom.2011.04.011
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. B, 43, 711-725.
- Pagano, N.J. (1969), "Exact solution for composite laminates in cylindrical bending", J. Compos. Mater., 3, 398-411. https://doi.org/10.1177/002199836900300304
- Pagano, N.J. (1971), "Influence of shear coupling in cylindrical bending of anisotropic laminates", J. Compos. Mater., 4, 330-343.
- Pagano, N.J. and Wang, A.S.D. (1971), "Further study of composite laminates under cylindrical bending", J. Compos. Mater., 5, 521-528. https://doi.org/10.1177/002199837100500410
- Park, J. and Lee, S.Y. (2003), "A new exponential plate theory for laminated composites under cylindrical bending", Tran. Japan. Soc. Aero. Space Sci., 46(152), 89-95. https://doi.org/10.2322/tjsass.46.89
- Perel, V.Y. and Palazotto, A.N. (2001), "Finite element formulation for cylindrical bending of a transversely compressible sandwich plate based on assumed transverse strain", Int. J. Solid. Struct., 38, 5373-5409. https://doi.org/10.1016/S0020-7683(00)00293-6
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Saeedi, N., Sab, K. and Caron, J.F. (2013), "Cylindrical bending of multilayered plates with multidelamination via a layerwise stress approach", Compos. Struct., 95, 728-739. https://doi.org/10.1016/j.compstruct.2012.08.037
- Sayyad, A.S., Ghugal, Y.M. and Naik, N.S. (2015), "Bending analysis of laminated composite and sandwich beams according to refined trigonometric beam theory", Cur. Layer. Struct., 2, 279-289.
- Sayyad, A.S., Ghumare, S.M. and Sasane, S.T. (2014), "Cylindrical bending of orthotropic plate strip based on n-th order plate theory", J. Mater. Eng. Struct., 1, 47-52.
- Sayyad, A.S. and Ghugal, Y.M. (2015a), "A nth-order shear deformation theory for composite laminates in cylindrical bending", Curv. Layer. Struct., 2, 290-300.
- Sayyad, A.S. and Ghugal, Y.M. (2013), "Effect of stress concentration on laminated plates", J. Mech., 29, 241-252. https://doi.org/10.1017/jmech.2012.131
- Sayyad, A.S. and Ghugal, Y.M. (2014a), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10, 247-267. https://doi.org/10.1007/s10999-014-9244-3
- Sayyad, A.S. and Ghugal, Y.M. (2014b), "On the buckling of isotropic, transversely isotropic and laminated composite rectangular plates", Int. J. Struct. Stab. Dyn., 14, 1-32. https://doi.org/10.1007/s13296-014-1001-9
- Sayyad, A.S. and Ghugal, Y.M. (2015b), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
- Shimpi, R.P. and Ghugal, Y.M. (2001), "A new layerwise trigonometric shear deformation theory for twolayered cross-ply beams", Compos. Sci. Tech., 61, 1271-1283. https://doi.org/10.1016/S0266-3538(01)00024-0
- Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43, 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007
- Shimpi, R.P., Arya, H. and Naik, N.K. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Compos., 22, 1667-1688. https://doi.org/10.1177/073168403027618
- Shu, X.P. and Soldatos, K.P. (2000), "Cylindrical bending of angle-ply laminates subjected to different sets of edge boundary conditions", Int. J. Solid. Struct., 37, 4289-4307. https://doi.org/10.1016/S0020-7683(99)00144-4
- Soldatos, K.P. and Watson, P. (1997), "A method for improving the stress analysis performance of twodimensional theories for composite laminates", Acta Mech., 123, 163-186. https://doi.org/10.1007/BF01178408
- Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94, 195-200. https://doi.org/10.1007/BF01176650
- Starovoytov, E.I., Dorovskaya, E.P. and Starovoytov, S.A. (2010), "Cylindrical bending of an elastic rectangular sandwich plate on a deformable foundation", Mech. Compos. Mater., 46(1), 57-68. https://doi.org/10.1007/s11029-010-9126-1
- Stein, M. (1986), "Nonlinear theory for plates and shells including effect of transverse shearing", AIAA J., 24, 1537-1544. https://doi.org/10.2514/3.9477
- Toledano, A. and Murakami, H. (1987a), "A Composite plate theory for arbitrary laminate configuration", J. Appl. Mech., 54, 181-189. https://doi.org/10.1115/1.3172955
- Toledano, A. and Murakami, H. (1987b), "A Higher order laminated plate theory with improved in-plane response", Int. J. Solid. Struct., 23, 111-131. https://doi.org/10.1016/0020-7683(87)90034-5
- Tornabene, F., Fantuzzi, N., Viola, E. and Batra, R.C. (2015), "Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory", Compos. Struct., 119, 67-89. https://doi.org/10.1016/j.compstruct.2014.08.005
- Tornabene, F., Fantuzzi, N., Viola, E. and Carrera, E. (2014), "Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method", Compos. Struct., 109, 675-697.
- Touratier, M. (), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916.
- Vel, S.S. and Batra, R.C. (2000), "Cylindrical bending of laminated plates with distributed and segmented piezoelectric actuators/sensors", AIAA J., 38(5), 857-867. https://doi.org/10.2514/2.1040
- Vel, S.S. and Batra, R.C. (2001), "Exact solution for the cylindrical bending of laminated plates with embedded piezoelectric shear actuators", Smart Mater. Struct., 10, 240-251. https://doi.org/10.1088/0964-1726/10/2/309
- Vel, S.S., Mewer, R.C. and Batra, R.C. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", Int. J. Solid. Struct., 41, 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012
- Wan, F.Y.M. (1992), "Cylindrical bending of thin plate", Int. J. Solid. Struct., 29, 547-557. https://doi.org/10.1016/0020-7683(92)90053-V
- Wu, C.P. and Syu, Y.S. (2007), "Exact solutions of functionally graded piezoelectric shells under cylindrical bending", Int. J. Solid. Struct., 44, 6450-6472. https://doi.org/10.1016/j.ijsolstr.2007.02.037
- Yang, J.S., Batra, R.C. and Liang, X.Q. (1994), "The cylindrical bending vibration of a laminated elastic plate due to piezoelectric actuators", Smart Mater. Struct., 3, 485-493. https://doi.org/10.1088/0964-1726/3/4/011
- Zenkour, A.M. (2005), "On vibration of functionally graded plates according to a refined trigonometric plate theory", Int. J. Struct. Stab. Dyn., 5, 279-297. https://doi.org/10.1142/S0219455405001581
- Zenkour, A.M. (2007), "Three-dimensional elasticity solution for uniformly loaded cross-ply laminates and sandwich plates", J. Sandw. Struct. Mater., 9, 213-238. https://doi.org/10.1177/1099636207065675
- Zhou, Y.Y., Chen, W.Q., Lu, C.F. and Wang, J. (2009), "Free vibration of cross-ply piezoelectric laminates in cylindrical bending with arbitrary edges", Compos. Struct., 87, 93-100. https://doi.org/10.1016/j.compstruct.2008.01.002
Cited by
- 1D analysis of laminated composite and sandwich plates using a new fifth-order plate theory vol.15, pp.1, 2018, https://doi.org/10.1590/1679-78253973
- Static analysis of multiple graphene sheet systems in cylindrical bending and resting on an elastic medium vol.75, pp.1, 2016, https://doi.org/10.12989/sem.2020.75.1.109
- An Alternative Electro-Mechanical Finite Formulation for Functionally Graded Graphene-Reinforced Composite Beams with Macro-Fiber Composite Actuator vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247802