• Title/Summary/Keyword: component reliability function

Search Result 92, Processing Time 0.024 seconds

APPROXIMATION OF RELIABILITY IMPORTANCE FOR CONTINUUM STRUCTURE FUNCTIONS

  • Lee, SeungMin;Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.5 no.1
    • /
    • pp.55-60
    • /
    • 1997
  • A continuum structure function(CSF) is a non-decreasing mapping from the unit hypercube to the unit interval. The reliability importance of component $i$ in a CSF at system level ${\alpha}$, $R_i({\alpha})$) say, is zero if and only if component $i$ is almost irrelevant to the system at level ${\alpha}$. A condition to check whether a component is almost irrelevant to the system is presented. It is shown that $R^{(m)}_i({\alpha}){\rightarrow}R_i({\alpha})$ uniformly as $m{\rightarrow}{\infty}$ where each $R^{(m)}_i({\alpha})$ is readily calculated.

  • PDF

Reliability Estimation of Ball Grid Array 63Sn-37Pb Solder Joint (Ball Grid Array 63Sn-37Pb Solder joint 의 건전성 평가)

  • 명노훈;이억섭;김동혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.630-633
    • /
    • 2004
  • Generally, component and FR-4 board are connected by solder joint. Because material properties of components and FR-4 board are different, component and FR-4 board show different coefficients of thermal expansion (CTE) and thus strains in component and board are different when they are heated. That is, the differences in CTE of component and FR-4 board cause the dissimilarity in shear strain and BGA solder joint s failure. The first order Taylor series expansion of the limit state function incorporating with thermal fatigue models is used in order to estimate the failure probability of solder joints under heated condition. A model based on plastic-strain rate such as the Coffin-Manson Fatigue Model is utilized in this study. The effects of random variables such as frequency, maximum temperature, and temperature variations on the failure probability of the BGA solder joint are systematically investigated by using a failure probability model with the first order reliability method(FORM).

  • PDF

Reliability of a k-out-of-n Cold Standby System with Imperfect Switches

  • Abouammoh, A.M.;Sarhan, Ammar M.
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.253-262
    • /
    • 2001
  • A k-out-of-n standby system is considered where all of its components are s-independent and classified either working or cold standby connected with imperfect switches. The probability density function of the life length for this system is established in closed form, when the underlying components have constant failure rates. Also the reliability function of the system is derived. Finally, the reliability functions for one, two and three out of four systems are deduced for perfect or imperfect switches and identical or non-identical constant failure rates for working and standby components.

  • PDF

On the Reliability Equivalence (신뢰도 함수의 동치에 관한 소고)

  • Ahn, C.W.;Chae, K.C.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.629-638
    • /
    • 1995
  • It is shown that the reliability function of an n-component parallel system is equivalent to that of n-component stand-by system if we increase the exponential failure rates of the parallel system's components in proportion to the increasing load per surviving component.

  • PDF

Reliability analysis of multi-state parallel system with a multi-functional standby component (다기능 대기부품을 갖는 다중상태 병렬시스템의 신뢰도 분석)

  • Kim, Dong-Hyeon;Lee, Suk-Hoon;Lim, Jae-Hak
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.4
    • /
    • pp.75-87
    • /
    • 2015
  • A redundant structure typically consists of primary component and standby component taking over the function of the primary component when the primary component fails. In this research, we consider a redundant structure in which a standby component can take over the function of more than one primary component when primary components fail. And we assume that the system has multi-state according to the states of components while all components have two states. This system is called as the multi-state redundant system with a multi-functional standby component. This type of redundant structure is frequently adapted by the system such as an aircraft in which the weight is an important design factor. In this paper, we propose new reliability model for this multi-state redundant system with a multi-functional standby component in order for evaluating the reliability of the system. Under the assumption that all components have constant failure rate, we evaluate the reliability of the system by applying Markov analysis method. And we investigate the effect of the multi-functional standby component by comparing reliabilities of the parallel system with multi-functional standby component and a simple parallel system and a parallel system with redundant structure.

Virtual Coverage: A New Approach to Coverage-Based Software Reliability Engineering

  • Park, Joong-Yang;Lee, Gyemin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.467-474
    • /
    • 2013
  • It is common to measure multiple coverage metrics during software testing. Software reliability growth models and coverage growth functions have been applied to each coverage metric to evaluate software reliability; however, analysis results for the individual coverage metrics may conflict with each other. This paper proposes the virtual coverage metric of a normalized first principal component in order to avoid conflicting cases. The use of the virtual coverage metric causes a negligible loss of information.

On-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures

  • Lei, Ying;Wang, Longfei;Lu, Lanxin;Xia, Dandan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.789-797
    • /
    • 2017
  • Recently, some integrated structural identification/damage detection and reliability evaluation of structures with uncertainties have been proposed. However, these techniques are applicable for off-line synthesis of structural identification and reliability evaluation. In this paper, based on the recursive formulation of the extended Kalman filter, an on-line integration of structural identification/damage detection and reliability evaluation of stochastic building structures is investigated. Structural limit state is expanded by the Taylor series in terms of uncertain variables to obtain the probability density function (PDF). Both structural component reliability with only one limit state function and system reliability with multi-limit state functions are studied. Then, it is extended to adopt the recent extended Kalman filter with unknown input (EKF-UI) proposed by the authors for on-line integration of structural identification/damage detection and structural reliability evaluation of stochastic building structures subject to unknown excitations. Numerical examples are used to demonstrate the proposed method. The evaluated results of structural component reliability and structural system reliability are compared with those by the Monte Carlo simulation to validate the performances of the proposed method.

A Vtub-Shaped Hazard Rate Function with Applications to System Safety

  • Pham, Hoang
    • International Journal of Reliability and Applications
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • In reliability engineering, the bathtub-shaped hazard rates play an important role in survival analysis and many other applications as well. For the bathtub-shaped, initially the hazard rate decreases from a relatively high value due to manufacturing defects or infant mortality to a relatively stable middle useful life value and then slowly increases with the onset of old age or wear out. In this paper, we present a new two-parameter lifetime distribution function, called the Loglog distribution, with Vtub-shaped hazard rate function. We illustrate the usefulness of the new Vtub-shaped hazard rate function by evaluating the reliability of several helicopter parts based on the data obtained in the maintenance malfunction information reporting system database collected from October 1995 to September 1999. We develop the S-Plus add-in software tool, called Reliability and Safety Assessment (RSA), to calculate reliability measures include mean time to failure, mean residual function, and confidence Intervals of the two helicopter critical parts. We use the mean squared error to compare relative goodness of fit test of the distribution models include normal, lognormal, and Weibull within the two data sets. This research indicates that the result of the new Vtub-shaped hazard rate function is worth the extra function-complexity for a better relative fit. More application in broader validation of this conclusion is needed using other data sets for reliability modeling in a general industrial setting.

  • PDF

Reliability Estimation for a Shared-Load System Based on Freund Model

  • Hong, Yeon-Woong;Lee, Jae-Man;Cha, Young-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 1995
  • This paper considers the reliability estimation of a two-component shared-load system based on Freund model. Maximum likelihood estimator, order restricted maximum likelihood estimator and uniformly minimum variance unbiased estimator of the reliability function for the system are obtained. Performance of three estimators for moderate sample sizes is studied by simulation.

  • PDF

Component Importance for Continuum Structure Functions with Underlying Binary Structures

  • Lee, Seung-Min;Sim, Song-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.577-582
    • /
    • 2007
  • A continuum structure function (CSF) is a non-decreasing mapping from the unit hypercube to the unit interval. A B-type CSF, defined in the text, is a CSF whose behaviour is modeled by its underlying binary structures. As the measure of importance of a system component for a B-type CSF, the structural and reliability importance of a component at a system level ${\alpha}$(0 < ${\alpha}$ < 1) are defined and their properties are deduced.