• Title/Summary/Keyword: complex representation

Search Result 383, Processing Time 0.025 seconds

Applied Neural Net to Implementation of Influence Diagram Model Based Decision Class Analysis (영향도에 기초한 의사결정유형분석 구현을 위한 신경망 응용)

  • Park, Kyung-Sam;Kim, Jae-Kyeong;Yun, Hyung-Je
    • Asia pacific journal of information systems
    • /
    • v.7 no.1
    • /
    • pp.99-111
    • /
    • 1997
  • This paper presents an application of an artificial neural net to the implementation of decision class analysis (DCA), together with the generation of a decision model influence diagram. The diagram is well-known as a good tool for knowledge representation of complex decision problems. Generating influence diagram model is known to in practice require much time and effort, and the resulting model can be generally applicable to only a specific decision problem. In order to reduce the burden of modeling decision problems, the concept of DCA is introduced. DCA treats a set of decision problems having some degree of similarityz as a single unit. We propose a method utilizing a feedforward neural net with supervised learning rule to develop DCA based on influence diagram, which method consists of two phases: Phase l is to search for relevant chance and value nodes of an individual influence diagram from given decision and specific situations and Phase II elicits arcs among the nodes in the diagram. We also examine the results of neural net simulation with an example of a class of decision problems.

  • PDF

Performance Evaluation of Four Different Land Surface Models in WRF

  • Lee, Chong Bum;Kim, Jea-Chul;Belorid, Miloslav;Zhao, Peng
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • This study presents a performance evaluation of four different land surface models (LSM) available in Weather Forecast Research (WRF). The research site was located in Haean Basin in South Korea. The basin is very unique by its geomorphology and topography. For a better representation of the complex terrain in the mesoscale model were used a high resolution topography data with a spatial resolution of 30 meters. Additionally, land-use layer was corrected by ground mapping data-sets. The observation equipments used in the study were an ultrasonic anemometer with a gas analyzer, an automatic weather station and a tethered balloon sonde. The model simulation covers a four-day period during autumn. The result shows significant impact of LSM on meteorological simulation. The best agreement between observation and simulation was found in the case of WRF with Noah LSM (WRF-Noah). The WRF with Rapid Update Cycle LSM (WRF-RUC) has a very good agreement with temperature profiles due to successfully predicted fog which appeared during measurements and affected the radiation budget at the basin floor. The WRF with Pleim and Xiu LSM (WRF-PX) and WRF with Thermal Diffusion LSM (WRF-TD) performed insufficiently for simulation of heat fluxes. Both overestimated the sensible and underestimated the latent heat fluxes during the daytime.

Comparison of (1962) and (2005) - Focusing on the Collapse of Order (<폭군 연산>(1962)과 <왕의 남자>(2005) 비교연구 - 질서의 붕괴를 중심으로)

  • Kim, Hyunsu;Yi, Hyoin
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.169-179
    • /
    • 2017
  • The historical film is complex genre that give various messages of directors besides a historical fact. Shin Sangok and Lee Joonik are important historical film directors. Their films show director's style by various method of historical reproduction. Sin Sangok and Lee Joonik portrayed same person Yeonsan, in and . They described identical person and historical fact in a different way. This is due to director's view of history, time of reinterpretation of history, and so forth. Therefore this paper is going to analysis the method of representation on history.

A Comparative Study on the Surrealistic Characters of Jaime Hayon and Marcel Wanders Design (하이메 아욘과 마르셀 반더스의 디자인에서 나타나는 초현실주의적 특성 비교 연구)

  • Han, Jeong-Won
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.2
    • /
    • pp.55-63
    • /
    • 2011
  • This study aims to figure out diversity and complexity of modern design by analysing surrealistic characters of Jaime Hayon and Marcel Wanders design, who are working actively in diverse design fields including graphic design, product design, and space design. First fundamental theories of surrealism was reviewed, and structure for analysis was made by studying characters of design representation derived by surrealistic concepts. And then design projects in the fields of furniture and product design, interior space design, and project design that were performed by two designers after the year 2000 were analysed. Two designers assume critical attitudes in mass production of functional design which is made by only machines, and they have something in common pursuing creative and imaginative design by making unique artistic elements by using modern technology. In this way, they create surrealistic fantasy in their design. On the other hand Jaime Hayon and Marcel Wanders show interesting differences in modes of expression. Hayon creates unique and organic forms and characters based on his creative imagination, and he enjoys to express boldness and amusement. Wanders shows sophisticated and elegant duality by dramatic balance between intricate patterns and minimal forms. Both designers have important influences in modern design as creative leaders always pursuing new things and representing complex tendency of modern society.

Typological Characteristics of Methods in Formalization Process of Body Movement (몸 움직임의 형태화 과정에 나타난 방법적 유형 특성)

  • Kim, Jong-Jin;Kim, Ja-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.5 s.58
    • /
    • pp.28-35
    • /
    • 2006
  • During the modern age, various fields have fundamentally changed from the preconceived ideas of the past. The concept of time-space relationship changed also. E. J. Marey was almost the first one to visualize the movement of animals and people through scientific methods. Frank B. Gilbreth used more precise photographic equipments to develop more accurate and specific body movement diagrams. The emergence of visualization of body movement is not the only product from the scientific field. The new concept of time-space can be easily noticed in modem art, music and dance. In space design, Futurism attempted to represent the dynamism and speed in a sculptural form. On the other hand, there were examples to further investigate the specific analysis of body movements such as 'Scientific Management'. Body movement diagrams are widely used in various projects in contemporary space design. The difference is that now the design process is more integrated with the analysis. The representation of speed and the container of movements are interwoven in a complex manner in which fluid relationship between body and space is possible. Three types can now be considered: Object, Container and Interactivity. This study attempts to analyze brief history of body movement studies and their application for contemporary space design.

Practical Alarm Suppression Rules and their Implementation for Nuclear Power Plants (원자력발전소의 출력감발모드를 위한 경보축약 규칙)

  • Hwang, In-Koo;Kim, Yang-Mo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1804-1810
    • /
    • 2011
  • It is necessary to adopt some logical techniques and methods of alarm processing for a large complex plant such as nuclear power plants in order to present the occurred alarm messages properly and concisely. Among such alarm processing techniques, the alarm suppressing function is a strong tool to avoid alarm flooding during the sudden transients of plant output power such as turbine trips, reactor trips and other incidents. Unless any suppression or representation technologies are used in an alarm message listing system, it cannot provide quick assistance to plant operators or supervisors during plant upsets because too many alarm messages are presented in an alarm list window. This paper presents the key suppression methods and analysis processes developed for implementing a suppressed alarm message listing function of an integrated alarm system called LogACTs which has been applied to a CANDU nuclear power plant. A simulation testing of the suppressing function conducted with the real plant alarm message list data has demonstrated an effective performance of the developed logics with the high suppression rate.

Numerical Simulation of Dam-Break Problem Using SU/PG Scheme (SU/PG 기법을 이용한 댐붕괴 수치모의)

  • Seo, Il Won;Song, Chang Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.198-198
    • /
    • 2011
  • The numerical simulation of dam break problem suffers from several challenges in terms of accuracy, stability, and versatility of the simulation algorithm since the water flow is generally discontinuous and presents abrupt variations. Thus, to obtain stable and accurate solutions, flow models for this purpose require numerical schemes provided with shock-capturing properties, and with the ability to work with flexible two-dimensional meshes. In this context, SU/PG method(Hughes and Brooks, 1979) is excellent candidate for the solution of the dam break problem. The weak formulation of the equations and the discontinuous polynomial basis lead to an accurate representation of bore waves(shocks). Furthermore, the discretization of the domain in finite elements is extremely effective in modeling complex geometries. In this study, a finite element model based on the SU/PG scheme is developed to solve shallow water equations and the model is applied to dam break problem. It is found that the present model accurately captures the bore wave that propagates downstream while spreading laterally and the depression wave that moves upstream. Furthermore, the propagation and formation of water surface profile compared favorably with those obtained by the previously published results.

  • PDF

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.

A Formal Specification of Fuzzy Object Inference Model (퍼지 객체 추론 모델의 정형화)

  • Yang, Jae-Dong;Yang, Hyung-Jeong
    • Journal of KIISE:Databases
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2000
  • There are three significant drawbacks in extant fuzzy rule-based expert system languages. First, they lack the functionality of composite object inference. Second, they do not support fuzzy reasoning semantically easy to understand and conceptually simple to use. Third, knowledge representation and reasoning style of their model have a great semantic gap with those of current database models. Therefore, it is very difficult for the two models to be seamlessly integrated with each other. This paper provides the formal specification of a fuzzy object inference model to solve the three drawbacks. GIS(Geographic Information System) application domain is used to demonstrate that our model naturally models complex GIS information in terms of composite objects and successfully performs fuzzy inference between them.

  • PDF

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs

  • Franca, Marcela Bruna Braga;Greco, Marcelo;Lanes, Ricardo Morais;Almeida, Valerio Silva
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.141-156
    • /
    • 2016
  • The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.