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I. INTRODUCTION

In contrast to evaluating a decision problem,
there has been little research to formulate the
decision problem. The formulation implies in
this paper the construction of a decision model,
such as an influence diagram (ID) originally
designed for representing and solving complex
decision problems [Howard & Matheson, 1984].
The diagram is a wuseful tool for decision
analysis because of its perspicuity in graphically
displaying both the variables of a decision
problem and their relationships. The model
construction is in practice known to be a most
complicated and burdensome process. Furthe-
rmore, the resulting model is generally
applicable to one specific decision problem
[Reed, 1989; Kim, 1991].

From this point of view, a set of decisions
having some degree of similarity among them
can be treated as a single unit in order to
reduce the burden of decision structuring.
Holtzman [1989] defines this unit as a class of
decisions and the corresponding collective
analysis as a decision class analysis (DCA). He
describes that whereas the end of result of an
individual analysis is a decision, the end of
DCA is an individual decision analysis, a decision
model to evaluate before a recommendation is
generated. When a class of decisions is defined
and the DCA is implemented, we can
inexpensively obtain an individual decision
analysis considering the specific situation of
decision maker within the class.

In this paper, a supervised learning approach
is utilized for analyzing a class of decisions
which would result in generating IDs. While
there are many other supervised learning
approaches in neural and non-neural nets that

we could have used [Quinlan, 1992, Weiss &
Kulikowski, 1991], we choose to wuse a
feed-forward neural net (FNN). Some good
reasons for using FNN are, for instance: (1)
easy to implement and use by the novice, (2)
popular in the literature and we wished to
explore their capabilities, (3) software is readily
available, etc. However, there are no particular
properties of the domain that led us to believe
beforehand that neural nets would be superior.

We have not experimented with other
approaches, as the main intent of our study
was to demonstrate supervised learning, and
FNN is a good representative method.

Some studies on constructing IDs [or belief
networks] from database can be found in
Cooper & Herskovits [1992] and Herskovits &
Cooper [1991], and a general method to address
this topic is presented by Goodman & Smyth
[1993]. Note . that these methods have some
differences from this paper. For instance, while
the aim of previous approaches 1is the
automated discovery of probabilistic depen-
dencies when the nodes in the belief net are
given, this paper focuses on (1) search for the
nodes in the ID when the specific situation of
the decision maker is given, and (2) identify
the relationships among the nodes. Additionally,
the measure of the relationships is not
probability with sum-to-unity.

I. INFLUENCE DIAGRAMS

Influence diagrams (IDs) developed as a
model for representing complex decision
problems based upon incomplete and uncertain
information from a variety of sources [Owen,
1984]. Knowledge of the interrelationships

among variables is represented in a compact



graphical and numerical framework which
identifies the critical variables and explicitly
reveals any conditional independence among
them. The application of IDs as a development
tool for building expert systems or intelligent
decision systems has been introduced by Rege
& Agogino [1988] and Holtzman [1989]. Kim
[1991], Kim et al. [1992] and Chung et al.
[1992] have proposed a method of building IDs
using  rule-based technique for an efficient
problem solving,

As shown in Figure 1, ID is an acyclic
digraph G = (N, A), where N is a finite set of
nodes and A is a set of arcs, A NN. This
visual level of the ID explicitly reveals the flow
of information, influences, and overall structure
of the decision problem. The nodes are
partitioned into sets C, D and V. The
circular-shaped chance nodes <C represent
uncertain or certain states, the rectangular-
shaped decision nodes dD reveal variables
whose values are chosen by the decision maker,
and the diamond-shaped value node vV
represents the objective to be maximized in

expectation by the decision analysis.

Transportatiol
time
Contract a

Fig. 1. An example of influence diagram.

International

price

As shown in Figure 2, there are five types in
A, and each arc in the graph has different
meaning. Arcs between ¢C represent conditional
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influences.
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Fig. 2. Five interpretations of an arc in influence diagrams.
{a) Probabilistic, (b) Informational, (c) Causality,
{d) No-forgetting, (e) Value influence

The absence of this arc is a stronger
statement, indicating explicitly the conditional
independence between the two variables. An arc
going into dD indicates informational influence
and shows which variable will be known by
the decision maker at the time the decision is
made. Arcs from 4 to ¢ node are causalities
since the choice of one decision alternative over
the other selections can influence the universe
of values the state variable can assume.
No-forgetting arcs are placed between d to
signify that decisions are sequential in time and
the value of past decisions is remembered. Arcs
in the single value node oV signify which
nodes directly influence the objective function.

ID can be viewed from three levels:
topological, functional, and the numerical level
[Howard & Matheson, 1984]. Each level would
provide a stage of decision making in a given
domain. At the topological or visual level
shown in Figure 1, the nodes in the diagram
represent the key variables in the system being
modeled and the arcs or arrows identify
conditional influences among them. The nature
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of these influences is specified at the functional
level and further quantified at the numerical
level. It should be noted that IDs on the
topological level do not need a mathematical or
probabilistic basis to justify themselves.

The functional level is concerned with how
nodes are related. The relationships described in
topological level can be divided into two parts,
the conditional influence (Figure 2. a, ¢, €) and
the informational influence (Figure 2. b, d). Their
influences are justified by mathematical or
probabilistic representation at the functional
level. At the final level, numerical level,
probability distributions from prior information,
decision values and costs, and the utilities of
the decision maker are assessed numerically for
each node.

Once a complete ID is generated, the
diagram is manipulated and evaluated for
determining the optimal decision = strategy.
Probabilistic IDs can be solved using an
algorithm described by Shachter [1986, 1988].
This algorithm consists of the value-preserving
transformations, node removal and arc reversals,
which correspond to the rollback procedure in
decision tree models [Bunn, 1984].

III. DECISION CLASS
ANALYSIS

3.1. The Concept

Model building of decision domain is known
to be a complicated and burdensome process,
and then the resulting diagram becomes
applicable to only one specific problem. As a
result, researchers have investigated the use of
knowledge from one decision problem to solve

other similar problems. Holtzmen [1989]
describes decision class analysis (DCA) which
regards a decision analysis as an integrator of
decision knowledge and treats a set of decisions
having some degree of similarity as a single
unit,

Although a concrete example or definition of
similarity is not found, DCA concept would be
helpful in modeling a decision problem in an
efficient way. In this research, similarity among
decision problems are interpreted in such a way
that the frames of influence diagrams (IDs) for
each decision problem are mutually resembled,
i.e, key variables that should be considered in
the problems are partially similar. More specific
descriptions of similarity is needed in further
research.

Whereas the end result of an individual
decision analysis is a decision, the result of a
DCA is an individual decision analysis. In
contrast with the single decision, DCA implies
a deliberate omission of knowledge pertaining
to the decision situation. Thus, analyzing a class
of decisions occurs at a higher level of
abstraction than analyzing a single decision.
Figure 3 depicts the knowledge about DCA.

In the construction of a decision model,
typically, domain experts provide domain-
specific knowledge, while a decision maker
furnishes
information about his or her current situation
environment. Domain-specific and situation-
specific knowledge is required to efficiently
yield a formal model from which a
recommendation can be inferred. In its

situation-specific ~ knowledge, ie,

integrator role, decision analysis focuses on
from the
participants, thus facilitating the development of

acquiring  knowledge decision

a consistent decision model that properly



represents the domain and situation of the
decision problem. The ID described previously
is a good decision model to characterize the
integrator role because it provides an effective
communication language between the remote
knowledge sources.

Situation-specific Decision
knowiedge maker
Domain-specil i
pecific Domain
Decision knowledge experts
class
s
Inalysis ) Decision-ansiytic Decision
knowledge analysts
individual
decision

analysis

Fig. 3. The knowledge about decision class analysis.

3.2. Influence Diagram and Neural
Net in Decision Class Analysis

A major advantages of IDs is the ability to
support problem partitioning, decomposition
and  abstraction. For excluding
irrelevant information from the ID can save a

instance,

decision maker’'s time and efforts, since there
are fewer variables to be interpreted. Generally,
variables in the ID are changeable from the
current specific situations. The specific situations
consist of decision nodes and decision maker’s
circumstances that exclude numerical and
functional information, which are called situation
frames in subsequent descriptions. It is noticed
situation frames except decision nodes are not
contained in the ID.

Usually recent approaches for implementing
DCA use knowledge-based or rule-based
approaches [Holtzman, 1989; Kim, 191; Kim et.
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al, 1992, Chung et al, 1992]. Rule-based
approaches tend to be domain-specific and
function extremely well when decision problems
are well defined. Rule-based system implement-
ation can be a lengthy process depending on
the size of the domain and the range of cases.
Namely, these are implemented by representing
the domain expert’s knowledge as a series of
IE-THEN conditions, which depends on observ-
ation of the whole known combinations of the
expert’s data. If the number of data points is
large and/or associative, then the rule-based
approaches may be inappropriate.

As described earlier, DCA treats a set of
individual decisions and it occurs at a high
level of abstraction. That is, a class problem
consists of a number of individual decision
problems, thus the size of class problem is
usually larger than the size of each individual
decision. When given the situation-specific
information from the decision maker, the DCA
should abstract the corresponding specific
decision variables for solving the individual
problem. In this case, the DCA can be
described as a classification problem.

In contrast to rule-based systems, neural
networks have a broad response capability
because of their capability to provide the
general classification of a set of inputs [Zahedi,
1991]. They can capture a large number of
cases quickly and provide reasonably accurate
responses. More specifically on the perspective
of implementing a DCA, consider the number
of the possible subsets of the situation frame
set in a class problem. That is 21-1, where n is
the total number of the elements of the
situation frame set (the reason of -1 is to
exclude the case the number of subset elements
is zero). For n=9, the number of possible cases
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is 511. Although it is possible to generate the
511 numbers of rules, it is an inefficient way
which requires much time and effort. Thus,
neural network with generalization capability
would be an excellent way of implementing the
DCA.

IV. IMPLEMENTING
DECISION CLASS ANALYSIS

4.1. A Procedure to Build a Decis
ion Model

Analyzing a class of decisions is composed of
three steps. First, the decision maker decides
decision nodes to represent the decision-making
purpose of a given problem. Second, the
decision maker suggests knowledge of specific
situations which occurred at current circumst-
ance and situation. The well-represented
situation-specific knowledge plays a major role
to elicit a single decision analysis through the
DCA. In the third step, to obtain a single
decision analysis, an influence diagram (ID) is
built based on the
situation-specific knowledge. The third step is

decision and the

made of two phases: Phase I is to search for
relevant chance and value nodes of the
individual ID from the given decision and
specific situations. Phase II elicits arcs among
the nodes.

The first two steps are performed by the
decision maker. The third step is a major part
of DCA, which is done by two trained
feed-forward neural nets (FNNs): Neural Net I
for Phase I and Neural Net II for Phase II. To
implement the third step, the training set is
obtained by collecting the knowledge of

decision participants in a class of decision

problems. The overall procedure is depicted in
Figure 4.

Decision problem

l Decide decision node(s) J

: R citan Situation
i::;c:v sl?gleﬁc situation !‘ S Knowledge base
1
X
Search for chance and value
nodes rel to decision and »
specific situation knowledge

'

Elicit influences between the Trained
decision, chance and value Neural Net IT
nodes

Trained
Neural Net

aad

An influence diagram

Fig. 4. Overall procedure for implementing the decision
class analysis.

Neural Nets I and II are trained by the
training set using backpropagation learning
algorithm. When the training is completed, the
trained neural nets perform DCA, ie., the ID is
generated . from the decision and situation-
specific knowledge. Therefore, two trained
neural nets have to perform two phases
respectively, which are explained in detail in
subsequent sections.

4.2. Building Influence Diagram

Phase I is to search for relevant chance and
value nodes based on given decision and
situation frames. The situation frame described
in the previous section also implies an
individual situation-specific knowledge. Phase II
elicits influences among decision, chance and
value nodes.

Denote a set S, where there may be one or
more situation frames sS. For each node in the



ID (dD, cC and V) or situation frame, if it is
present then its value is 1, otherwise its value
is zero. The arcs aij have three values: if the
direction of the arc is (ij) then aj =1, if (j,i)
then @j = -1, and if the influence between i
and j does not exist then aj = 0, where i < j
and i and j are nodes indices. Then DS, CV,
DCV and ARC are denoted as follows:

DS={d;|i=1, PLIS;| j=1, n},
cv={cli=1, g JKv; 1 j=1, m},
DCV={d;| i=1, PHUCV,

ARC={a;|ij, i=1,p+q+m—1,j=2,q+p+m},

where the size of ARC is (§**™)

Phase |

So as to search for relevant chance and value
nodes from the given decision and situation
frames, Neural Net I is used to represent the
relation between chance and value nodes, and
decision nodes and situation frames. The
training set of input and desired output pairs
to learn Neural Net I is represented as . These
training pairs can be generated from the case
studies of the similar problems within the class
with the help of the decision maker and
domain expert.

Phase I

A trained Neural Net II has to be prepared
to elicit the influences among output nodes of
Phase 1. The training set of input and desired
output to learn Neural Net II is . Namely, the
desired output of Phase I is the input of Phase
Il and the desired output of Phase II is the

arcs of an ID. Hence the training pairs can be
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generated consecutively based on those of Phase I

Bias node

Input Hidden Output
layer(0) layer(1) layer(2)

Fig. 5. A two-layer feedforward neural network.

As described in Phases I and II, this study
requires supervised learning because the pair of
each input vector with a target vector
representing the desired output exists explicitly.
There is a tremendous variety of training
algorithms in use today. The backpropagation .
algorithm is a systematic method for training
multi-layered FNNs, and it has a strong
foundation  [Rumelhart &
McClelland, 1986]. Although any type of neural
nets may be used, this paper uses a FNN

mathematical

shown in Figure 5 because one may use it as

one of the most simple model.

V. SIMULATION WITH AN
EXAMPLE

5.1. Description of a ClassProblem

As a class of decision problem, a
raw-material buyer problem in a textile
cooperation is used to demonstrate building an
ID or implementing the DCA. The company
makes some types of synthetic products. The
main raw materials of these products are TPA
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(terephthalic acid), DMT (dimethy terephthalate)
and EG (ethylene glycol). Presently, the raw
materials are imported from the foreign market.
There are two kinds of decisions in this
problem. The manager of the materials section
has to decide the amount of raw material and
the country from which the goods are
imported.

The state related with the decisions is varied
with the types of goods and the affecting
specific situations. According to a given raw
material and the specific situation, - variables
affecting the decision made a difference. For
example, under the situation to buy EG and to
decide the country, variables (chance nodes)
affecting this decision may include contract
quality and
transportation time. In the case of EG, quality
and transportation time are regarded as

price,  international  price,

especially important ones compared with TPA
and DMT. On the other hand, in the situation
to buy TPA and to decide the contract amount
and country, chance nodes related with this
decision are inventory level, product demand,
contract price, international price and reliability
(in the case of TPA, reliability is regarded as
an important variable).

In this problem, decisions of a similar type
are to be made frequently and these decisions
strongly depend on the specific situations
(situation frames). Hence, once the DCA is
implemented using neural nets, we can greatly
reduce the time and save lafge amounts of
duplicate efforts for a single decision. Using the
notations described in the previous section, we
restrict the boundary of the raw-material buyer
problem in Table 1.

Table 1. Summary of the raw-material buyer problem.

Node Symbol Content
name
Decision di  Contract amount
d2 Country
¢3  Product demand
C4 Inventory level
¢s International price
Cs  Spot price
chance . Gontract price
Cs Reliability
Cg Transportation time
cwo Quality

Value Vi1 Value

s1  Buying TPA raw-meaterial
S;  Buying DMT raw-material
s3  Buying EG raw-material
Situation s4 Variation of OPEC policy
ss  Variation of domestic economy
sg Variation of foreign economy
S7  Variation of opposite company policy

5.2. Learning Procedures

The backpropagation algorithm does not
always find global minimum but may stop at a
local minimum. However, in most cases, the
system can usually be driven to the global
minimum or to the desired accuracy with an
appropriate choice of the number of hidden
layers and processing elements (PEs). There are
no general rules in the literature that defines
the number of hidden layers, and the number
of PEs per hidden layer. Most studies of
backpropagation algorithm have found no more
than two hidden layers are required
[Wasserman, 1989; Hecht-Nielsen, 1989]. The
classification problem of this paper does not
possess linearly separable classes, thus a
two-layer neural net with one hidden layer is
used [for this issue, see Lippmann, 1987].



The addition of more hidden PEs improves
the performance of training but the ability of
generalization gets worse [Sorsa et al, 1991].
The number of hidden PEs must be large
enough to form a decision region that is as
complex as required by the given problem, and
on the other hand is small enough that the
generalization ability remains good. A study
similar to this statement is formally conducted
by Geman et. al, [1992]. They present error in
training is partitioned into bias and variance:
the more the number of hidden PEs are used,
the larger the variance but the smaller the bias
is occurred. Hence, we start with a small
number of hidden PEs and increase the number
until it becomes possible to drive the learning
error to a desired accuracy.

Initial weights and thresholds are used as
random numbers within a small range [-0.3,
0.3], although any other range, for example,
102, 02], could be used. The learning
coefficients of the generalized delta rule are
selected such that all of the step sizes with
respect to weights and thresholds are 0.9 and
all of the momentum term are 0.6 because they
are reported to yield fast learning [Rumelhart &
McClelland, 1986].

Training for Phase |

In the raw-material buyer problem, the
number of input PEs is 9 (the number of
situation frames) and the number of output PEs
is 11 (the number of DCV elements). All PEs in
Neural Net I are transferred by the sigmoid
functions, although any transfer function could
be used. About 50 data pairs have been
collected with the help of decision makers and
domain experts. Among the data pairs, 30

samples are wused for fraining and the
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remainders are used to test the learning
performance.

The number of hidden PEs of Neural Net I
is increased from a low number up to a level
that drives the actual output to a desired
accuracy. Specifically, if the node of ID is
presented as 1, Neural Net I should produce
the output near 1. In the other case it should
produce the output near zero. Namely, the
output of Neural Net I has to be clearly
discriminated whether the node is present or
absent. For example, the output can be
interpreted as a node absent if an output is
smaller than 0.5 and a node present if larger
than 0.5. The other discrimination criteria could
be used such as 04 and 0.6, or more strongly
0.3 and 0.7, etc.

Training for Phase I

The number of input PEs equals the number
of output PEs in Phase I (ie, 11). The possible
maximum number of output PEs (ie., arcs) of
the raw-material buyer problem is 55. Among
them, the arcs that are not always present are
eliminated for the sake of simple training. For
example, 3,7 is always zero because of no
influence between product demand (c3) and
international price (c7). Consequently 23 output
PEs are actually used.

Instead of using the sigmoid functions,
hyperbolic tangent functions may be used in
this phase to transfer the PEs of Neural Net II,
because they can range from -1 to 1. The
hyperbolic tangent functions make it possible to
express the directions of the arcs: forward
direction as 1, reverse direction as -1, and no
influence as 0. The method of choosing the
number of hidden PEs in Phase I also applies
to Phase IL
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Table 2. Discriminations by increasing hidden PEs for

Phase .
No.of hidden| PEs | 2 | 3 | 4 |5 |6 |7
Crteria of [ vaining| | (068|071 |073 |08t
discriminations | set 039021020019
testing 066|068 | 0.78
st | ™| ™| ™ lp33]033]024

5.3. Discussion of Simulation Results

Results of Phase |

Initially, the 9-2-11 Neural Net I is used. As
shown in Table 2, the addition of more hidden
PEs improves the discrimination power. In the
case of 4 hidden PEs, the actual output of
Neural Net I is discriminated such that the
value smaller than 039 represents the node
absent and the value larger than 0.66 the node
present. However, with the output in the
testing set, we cannot discriminate whether the
node is present or not. In the case of 5 hidden
PEs, the value smaller than 0.33 is interpreted
as the node absent and the value larger than
0.66 as the node present. Consequently, in this
phase 5 hidden PEs are needed at the least.

Table 3. Discriminations by increasing hidden PEs for
Phase Il

No.of hidden| PEs | 3 | 4 | 5 [ 61 7 | 8
Criteria of  |training 0.671{0.75(0.7910.820.83

discriminations | set 0291025021019 0:16
testing no 0.60{0.61|070{0.7310.74
set 0411032(03210.29/024

Results of Phase Il

The 11-523 Neural Net Il is used initially.
Table 3 shows the addition of more hidden PEs
improves the discrimination power. Observe
that the present and absent of arcs can be

discriminated when 4 or more PEs are used.
Shown in Figure 6 is an example generated by
Phases I and II

<,

s
Reliability
<, 4,
Invento
: |
d Contract
(] price.
:
amount 2
[ Interngtional
Product <, price
:

{a) Output of Phase .

Reliability
By
=

18 2
price

(b) Output of Phase Il

Fig. 6. An influence diagram built by the two phases.

Results by the Modification of Training Set Size

Most important question is how many
training data is used for solving a given
classification problem. There is no general rules
about this question and the rule may be
different according to given problem. The
number of IDs (ie, classes) that mainly or
frequently used in raw-material buyer problem
is about 50-60. Among them, 30 training pairs
(50-60%) are used for training Neural Nets I
and I, which are randomly selected over the
classes. Then, we can obtain a satisfying
solution when more than 5 hidden PEs are



used in Neural Nets I and II. Shown in Figure
7 is a result obtained by reducing the number
of training pairs from 30, where error is the
number of ambiguous results (e, non-
discriminated data whether nodes in the ID are
present or not). It gives that when less than 30
data pairs are used for training Neural Nets I
and I, there is no way to solve the
classification of raw-material buyer problem
although any number of hidden PEs are used.

Error

15 20 25 30

Size of training set

Fig. 7. Emor according to the size of training data.
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VI. CONCLUDING REMARKS

Analyzing a class of decisions as a single
unit is a basic concept to model a decision
problem efficiently. This study proposes a FNN
approach to implement the DCA, and as a
result, to build an ID. With the trained Neural
Nets 1 and II, the decision maker can easily
obtain the ID of a specific decision problem.

The illustrative example used in this paper
may be a small class of decisions. The
simulation results in each phase are quite
satisfactory. However, there are some lacks in
this paper: for instance, does not clearly present
a description of training set that required
according to increasing the size of a class
decision problem, and the definition of DCA.
The lack makes it a promising area for further
research.
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