• Title/Summary/Keyword: complex problem-solving

Search Result 269, Processing Time 0.026 seconds

A Study on the Metacognition Mathematical Problem - Solving (수학문제해결 수행에서의 메타인지에 대한 고찰)

  • 유승욱
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1998
  • So far the studies on mathematical problem-solving education have failed to realize the anticipated result from students. The purpose of this study is to examine the reasons from the metacognitional viewpoint, and to think of making meta-items which enables learners to study through making effective use of the meaning of problem-solving and through establishing a general, well-organized theory on metacognition related to mathematic teaching guiedance. Metacognition means the understanding of knowledge of one's own and significance in the situation that can be reflection so as to express one's own knowledge and use it effectively when was questioned. Mathematics teacher can help students to learn how to control their behaviors by showing the strategy clearly, the decision and the behavior which are used in his own planning, supervising and estimating the solution process himself. If mathematics teachers want their students to be learners not simply knowing mathematical facts and processes, but being an active and positive, they should develop effective teaching methods. In fact, mathematics learning activities are accomplished under the complex condition arising from the factors of various cognition activities. therefore, mathematical education should consider various factors of feelings as well as a factor as fragmentary mathematical knowledge.

  • PDF

Assessment of Mathematical Creativity in Mathematical Modeling

  • Jang, Hong-Shick
    • Research in Mathematical Education
    • /
    • v.15 no.2
    • /
    • pp.181-196
    • /
    • 2011
  • In mathematical modeling tasks, where students are exposed to model-eliciting for real and open problems, students are supposed to formulate and use a variety of mathematical skills and tools at hand to achieve feasible and meaningful solutions using appropriate problem solving strategies. In contrast to problem solving activities in conventional math classes, math modeling tasks call for varieties of mathematical ability including mathematical creativity. Mathematical creativity encompasses complex and compound traits. Many researchers suggest the exhaustive list of criterions of mathematical creativity. With regard to the research considering the possibility of enhancing creativity via math modeling instruction, a quantitative scheme to scale and calibrate the creativity was investigated and the assessment of math modeling activity was suggested for practical purposes.

Solution of periodic notch problems in an infinite plate using BIE in conjunction with remainder estimation technique

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.619-631
    • /
    • 2011
  • This paper provides a complex variable BIE for solving the periodic notch problems in plane plasticity. There is no limitation for the configuration of notches. For the periodic notch problem, the remainder estimation technique is suggested. In the technique, the influences on the central notch from many neighboring notches are evaluated exactly. The influences on the central notch from many remote notches are approximated by one term with a multiplying factor. This technique provides an effective way to solve the problems of periodic structures. Several numerical examples are presented, and most of them have not been reported previously.

The Effect of a Robot Programming Learning on Problem Solving Ability (로봇 프로그래밍 학습이 문제해결력에 미치는 영향)

  • Lee, EunKyoung;Lee, YoungJun
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.6
    • /
    • pp.19-27
    • /
    • 2007
  • To help programming learning, we have designed a robot programming course that improves complex cognitive abilities. The developed course was implemented in college programming classes and educational effects were analysed. While students are learning through LEGO Mindstorms NXT and NXT-G software, the students' problem solving abilities have been enhanced. The developed robot programming course gives positive effects on learners' problem solving abilities. It means that the developed course helps a learner in a cognitive domain.

  • PDF

A Task Centered Scratch Programming Learning Program for Enhancing Learners' Problem Solving Abilities (문제해결력 향상을 위한 과제 중심 스크래치 프로그래밍 학습 프로그램)

  • Lee, EunKyoung
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • Programming learning may help to enhance learners' complex problem solving abilities. However, it may cause excessive cognitive loads for learners. Therefore, selection of programming tools and design of teaching and learning strategies to minimize the learners' cognitive loads and to maximize the learning effects. A task centered Scratch programming learning program was developed to enhance problem solving abilities of middle school students. And then, we implemented the developed program in middle school programming classes and analysed the educational effects of the developed program. We found that the developed program was helpful in enhancing learners' problem solving abilities, especially in the element of 'troubleshooting', which explains ability of error detecting and correcting.

  • PDF

Ear Recognition by Major Axis and Complex Vector Manipulation

  • Su, Ching-Liang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1650-1669
    • /
    • 2017
  • In this study, each pixel in an ear is used as a centroid to generate a cake. Subsequently the major axis length of this cake is computed and obtained. This obtained major axis length serves as a feature to recognize an ear. Later, the ear hole is used as a centroid and a 16-circle template is generated to extract the major axis lengths of the ear. The 16-circle template extracted signals are used to recognize an ear. In the next step, a ring-to-line mapping technique is used to map these major axis lengths to several straight-line signals. Next, the complex plane vector computing technique is used to determine the similarity of these major axis lengths, whereby a solution to the image-rotating problem is achieved. The aforementioned extracted signals are also compared to the ones that are extracted from its neighboring pixels, whereby solving the image-shifting problem. The algorithm developed in this study can precisely identify an ear image by solving the image rotation and image shifting problems.

An effect coming to the problem solving ability from the problem posing activity by presenting the problem situation (문제 상황 제시에 따른 문제만들기 활동이 문제해결력에 미치는 영향)

  • Kim Jun Kyum;Lim Mun Kyu
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.5 no.1
    • /
    • pp.77-98
    • /
    • 2001
  • This study has a purpose to find out how the problem posing activity by presenting the problem situation effects to the mathematical problem solving ability. It was applied in two classes(Experimental group-35, Controlled group-37) of the fourth grade at ‘D’ Elementary school in Bang Jin Chung nam and 40 Elementary school teachers working in Dang Jin. The presenting types of problem situation are the picture type, the language type, the complex type(picture type+ language type), the free type. And then let them have the problem posing activity. Also, We applied both the teaching-teaming plan and practice question designed by ourself. The results of teaching and learning activities according to the type of problem situation presentation are as follows; We found out that the learning activity of the mathematical problem posing was helpful to the students in the development of the mathematical problem solving ability. Also, We found out that the mathematical problem posing made the students positively change their attitude and their own methods for mathematical problem solving.

  • PDF

Science High School Students' Analysis of Characteristics on Ill-Structured Problem-Solving Process (과학고 학생들의 비구조화된 문제 해결 과정 특성 분석)

  • Seo, Jin-Su;Han, Shin;Kim, Hyung-Bum;Jeong, Jin-Woo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.5 no.1
    • /
    • pp.8-19
    • /
    • 2012
  • The purpose of this study is to: analyze the characteristics on ill-structured problem-solving process; examine the type of memories used in their monitoring. The data were primary collected from observation and secondary the semi-structured in-depth interviews based on analysis of observation results with two students who belong to science school and a guidance. The findings of this study revealed that the ill-structured problems possess multiple representations and the upper level's problem have several sub-problems. And multiple steps simultaneously exist in particular stage of problem-solving process that is not single sequential but complex flow and have high frequency of discussion step. Type of memories used in ill-structured problems include idiosyncratic memories which is related in personal histories such as school performance, problem-related memories, abstract rules and intuition.

Korean Students' Performance in Problem Solving Literacy in PISA 2003 (PISA 2주기 검사에서 한국 학생들의 문제해결 영역 성취도 분석)

  • Gwak, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.647-655
    • /
    • 2004
  • PISA (Program for International Student Assessment) 2003, the second cycle of PISA, collected data with respect to students' cross-disciplinary problem solving capabilities. Problem solving is defined as the ability to use cognitive processes to solve real cross-disciplinary problems. For the purpose of PISA 2003 assessment, three problem types were chosen: Decision Making, System Analysis and Design, and Trouble Shooting. For this paper a preliminary analysis on Korean students' responses to the PISA 2003 problem-solving items was conducted. The quantitative analysis mainly focused on the difficulties of the PISA 2003 items, while the quantitative analysis dealt with students' responses to open-ended items, which helped understand Korean students' cognitive style and reasoning processes. According to the item analysis result, Korean students had difficulty in representing their answers with pictures or graphs, and interpreting long and complex text. They also showed low achievement with relatively unfamiliar topics or tasks. The paper concluded with several suggestions on improve the quality of science education.

Efficient Approximation of State Space for Reinforcement Learning Using Complex Network Models (복잡계망 모델을 사용한 강화 학습 상태 공간의 효율적인 근사)

  • Yi, Seung-Joon;Eom, Jae-Hong;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.6
    • /
    • pp.479-490
    • /
    • 2009
  • A number of temporal abstraction approaches have been suggested so far to handle the high computational complexity of Markov decision problems (MDPs). Although the structure of temporal abstraction can significantly affect the efficiency of solving the MDP, to our knowledge none of current temporal abstraction approaches explicitly consider the relationship between topology and efficiency. In this paper, we first show that a topological measurement from complex network literature, mean geodesic distance, can reflect the efficiency of solving MDP. Based on this, we build an incremental method to systematically build temporal abstractions using a network model that guarantees a small mean geodesic distance. We test our algorithm on a realistic 3D game environment, and experimental results show that our model has subpolynomial growth of mean geodesic distance according to problem size, which enables efficient solving of resulting MDP.