• Title/Summary/Keyword: complex eigenvalues

Search Result 62, Processing Time 0.027 seconds

ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

  • ZHU, SEN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1271-1286
    • /
    • 2015
  • An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

THE LOCATION FOR EIGENVALUES OF COMPLEX MATRICES BY A NUMERICAL METHOD

  • Wu, Junliang;Zhang, Pingping;Wang, Yong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.49-53
    • /
    • 2011
  • In this paper, we adopt a numerical method to establish the smallest set to contain all Ger$\v{s}$gorin discs of a given complex matrix and its some similar matrices. With the smallest set, a new estimation for all eigenvalues of the matrix is obtained.

A Novel Concept on Stochastic Stability

  • Bong, Seo-Young;Park, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.95.1-95
    • /
    • 2001
  • This paper is concerned with a novel S-stability (stochastic-stability) concept in linear time-invariant stochastic systems, where a stochastic mode in dynamics depends on both the external disturbance and the inner-parameter variations. This leads to an EAG (eigenstructure assignment gaussian) problem; that is, the problem of associating S-eigenvalues (stochastic-eigenvalues), S-eigenvectors (stochastic-eigenvectors), and their PDFs (probability density functions) with the stochastic information of the systems with the required stochastic specifications. These results explicitly characterize how S-eigenvalues, S-eigenvectors and their PDFs in the complex plane may impose S-stability on stochastic systems.

  • PDF

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.4
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

A Method to Accelerate Convergence of Hessenberg process for Small Signal Stability Analysis of Large Scale Power Systems (대규모 전력계통의 미소신호 안정도 해석을 위한 Hessenberg Process의 수렴특성 가속화 방법)

  • Song, Sung-Geun;Nam, Ha-Kon;Shim, Kwan-Shik;Moon, Chae-Ju;Kim, Yong-Gu
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.871-874
    • /
    • 1998
  • It is most important in small signal stability analysis of large scale power systems to compute only the dominant eigenvalues selectively with numerical stability and efficiency. Hessenberg process is numerically very stable and identifies the largest eigenvalues in magnitude. Hence, transformed system matrix must be used with the process. Inverse transformation with complex shift provides high selectivity centered on the shift, but does not possess the desired property of computing the dominant mode first. Thus, advantage of high selectivity of the transformation can be fully utilized only when the complex shift is given close to the dominant eigenvalues. In this paper, complex shift is determined by Fourier transforming the results of dynamic simulation with PTI's PSS/E transient simulation program. The convergence in Hessenberg process is accelerated using the iterative scheme. Overall, a numerically stable and very efficient small signal stability program is obtained. The stability and efficiency of the program has been validated against New England 10-machines 39-bus system and KEPCO system.

  • PDF

An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials

  • Kim, Jin-kwang;Cho, Sang-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.33-44
    • /
    • 2002
  • The problem of eigenvalues and eigenvectors is obtained from a v-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded conditions at interface. The complex stress function of the two-term William's type is used. The eigenvalues are solved by a commercial numerical program, MATHEMATICA. Stress singularities for v-notched cracks in pseudo-isotropic dissimilar materials are discussed. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of eigenvector coefficients associated with eigenvalues with egenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

ON NUMERICAL PROPERTIES OF COMPLEX SYMMETRIC HOUSEHOLDER MATRICES

  • Smoktunowicz, Alicja;Grabarski, Adam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.51-64
    • /
    • 2003
  • Analysis is given of construction and stability of complex symmetric analogues of Householder matrices, with applications to the eigenproblem for such matrices. We investigate numerical properties of the deflation of complex symmetric matrices by using complex symmetric Householder transformations. The proposed method is very similar to the well-known deflation technique for real symmetric matrices (Cf. [16], pp. 586-595). In this paper we present an error analysis of one step of the deflation of complex symmetric matrices.

  • PDF

Transient response of vibration systems with viscous-hysteretic mixed damping using Hilbert transform and effective eigenvalues

  • Bae, S.H.;Jeong, W.B.;Cho, J.R.;Lee, J.H.
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • This paper presents the time response of a mixed vibration system with the viscous damping and the hysteretic damping. There are two ways to derive the time response of such a vibration system. One is an analytical method, using the contour integral of complex functions to compute the inverse Fourier transforms. The other is an approximate method in which the analytic functions derived by Hilbert transform are expressed in the state space representation, and only the effective eigenvalues are used to efficiently compute the transient response. The unit impulse responses of the two methods are compared and the change in the damping properties which depend on the viscous and hysteretic damping values is investigated. The results showed that the damping properties of a mixed damping vibration system do not present themselves as a linear combination of damping properties.

Interval finite element method for complex eigenvalues of closed-loop systems with uncertain parameters

  • Zhang, XiaoMing;Ding, Han
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.163-178
    • /
    • 2007
  • In practical engineering, the uncertain concept plays an important role in the control problems of the vibration structures. In this paper, based on matrix perturbation theory and interval finite element method, the closed-loop vibration control system with uncertain parameters is discussed. A new method is presented to develop an algorithm to estimate the upper and lower bounds of the real parts and imaginary parts of the complex eigenvalues of vibration control systems. The results are derived in terms of physical parameters. The present method is implemented for a vibration control system of the frame structure. To show the validity and effectiveness, we compare the numerical results obtained by the present method with those obtained by the classical random perturbation.

Vibration Damping Analysis of Viscoelastic and Viscoelastically Damped Structures (점탄성 또는 점탄성 감쇠처리된 구조물의 진동 감쇠 해석)

  • 황원재;박진무
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 2000
  • We present finite element equations in the Laplace-domain for linear viscoelastic and viscoelstically damped structures governed by a constitutive equation involving factional order derivative opeartors. These equations yield a nonstandard eigenproblem consisted of frequency dependent stiffness matrix. To solve this nonstandard eigenproblem we suggest an eigenvalue iteration procedure in the Laplace-domain. Improved Zenor and GHM material function type constitutive equations in the Laplace-domain are also available for this procedure. From above equations, complex eigenvalues and complex eigenvectors are obtained. Using obtained eigenvalues and eigenvectors, time domain analysis is performed by means of mode superposition. Finally, finite element solutions of viscoelastic and viscoeleastically damped sandwich beam are presented as an example.

  • PDF