An Analysis of Eigenvalues and Eigenvectors for V-notched Cracks in Pseudo-isotropic Dissimilar Materials

  • Published : 2002.04.01

Abstract

The problem of eigenvalues and eigenvectors is obtained from a v-notched crack in pseudo-isotropic dissimilar materials by the traction free boundary and the perfect bonded conditions at interface. The complex stress function of the two-term William's type is used. The eigenvalues are solved by a commercial numerical program, MATHEMATICA. Stress singularities for v-notched cracks in pseudo-isotropic dissimilar materials are discussed. The RWCIM(Reciprocal Work Contour Integral Method) is applied to the determination of eigenvector coefficients associated with eigenvalues with egenvalues. The RWCIM algorithm is also coded by the MATHEMATICA.

Keywords

References

  1. Bogy. D. B., 'On the Problem of Edge-bonded Elastic Quarter-planes Loaded at the Boundary,' Int. J. Solids Structures, Vol. 6, pp. 1287-1313, 1970 https://doi.org/10.1016/0020-7683(70)90104-6
  2. Bogy. D. B., 'Two Edge-Bonded Elastic Wedges of Different Materials and Wedge Angles under Surtace Tractlons,' J. Applied Mechanics, Vol. 38, pp.377-386, 1971 https://doi.org/10.1115/1.3408786
  3. Hein. V. L., and Erdogan. F., 'Stress Singularities in a Two-material Wedge,' Int. J. Fract. Mech., Vol.7, pp. 317-330, 1971
  4. Carpenter. W. C., and Byers. C, 'A Path Independent Integral for Computing Stress Intensities for V-notched Cracks in a Bi-material,' Int. J. Fract., Vol. 35, pp.245-268, 1987 https://doi.org/10.1007/BF00276356
  5. Ting. T. C. T., and Chou, S. C.,'Edge Singularities in Anisotropic Composites,' Int. J. Solids Structures, Vol. 17. No. 11, pp. 1057-1068, 1981 https://doi.org/10.1016/0020-7683(81)90013-5
  6. Zwiers, R. I. ,Ting, T. C. T., and Spiker, R. L., 'On the Logarithmic Singularity of Free-edge Stress in Laminated Composites under Unilbrm Extension,' J. Applied Mechanics, Vol. 49, pp. 561-569, 1982 https://doi.org/10.1115/1.3162526
  7. Ting, T. C. T., 'Explicit Solution and Invariance of the Singularities at an Interface Crack in Anisotropic Composites,' Int. J. S olids Structures, Vol. 22. No.9, pp. 965-983, 1986 https://doi.org/10.1016/0020-7683(86)90031-4
  8. Lekhnitskii, S. G., 'Theory of Elasticity of an Anisotropic Elastic Body,' HoIden-Day, Inc., 1963
  9. Dunn, M. L., Suwito, W., and Cunningham, S., 'Stress Intensities at Notch Singularities,' Engng Fracture Mech., Vol. 57, No. 4, pp. 417-430, 1997 https://doi.org/10.1016/S0013-7944(97)00019-2
  10. Cho, S. B., and Yoon, S. K., 'A Study on the Determination and Characteristics of Stress Intensity Factors and Stress Singularities for V-notched Cracks in Dissimilar Materials,' KSME Journal, Vol. 16, No.10, pp. 1890-1899, 1992
  11. Cho, S. B., and Yang, J. H., ' A Study on Stress Singularities for V-Notched Cracks in Anisotropic Dissimilar Materials,' KSME Journal(A), Vol. 22, No.7, pp. 1307-1315, 1998
  12. ANSYS User's Manual, Revision 5.3
  13. R. Yuuki, and S. B. Cho, 'Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Crack in Dissimilar Materials," Engng. Frac. Mech, Vol. 34, pp. 179-188, 1989 https://doi.org/10.1016/0013-7944(89)90251-8