• Title/Summary/Keyword: complete manifolds

Search Result 66, Processing Time 0.028 seconds

EMBEDDING RIEMANNIAN MANIFOLDS VIA THEIR EIGENFUNCTIONS AND THEIR HEAT KERNEL

  • Abdalla, Hiba
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.939-947
    • /
    • 2012
  • In this paper, we give a generalization of the embeddings of Riemannian manifolds via their heat kernel and via a finite number of eigenfunctions. More precisely, we embed a family of Riemannian manifolds endowed with a time-dependent metric analytic in time into a Hilbert space via a finite number of eigenfunctions of the corresponding Laplacian. If furthermore the volume form on the manifold is constant with time, then we can construct an embedding with a complete eigenfunctions basis.

GENERALIZED MYERS THEOREM FOR FINSLER MANIFOLDS WITH INTEGRAL RICCI CURVATURE BOUND

  • Wu, Bing-Ye
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.841-852
    • /
    • 2019
  • We establish the generalized Myers theorem for Finsler manifolds under integral Ricci curvature bound. More precisely, we show that the forward complete Finsler n-manifold whose part of Ricci curvature less than a positive constant is small in $L^p$-norm (for p > n/2) have bounded diameter and finite fundamental group.

Complete open manifolds and horofunctions

  • Yim, Jin-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.351-361
    • /
    • 1995
  • Let M be a complete open Riemannian manifold. When the sectional curvature $K_M$ of M is nonpositive, Gromov has defined, in his lectures [3], the ideal boundary of M, and used it to study the geometric structure of M. In a Hadamard manifold, a simply connected manifold with nonpositive sectional curvature, a point at infinity can be defined as an equivalence class of rays. He proved many interesting theorems using this definition of ideal boundary and the so-called Tit's metric on it. He also suggested a counterpart to this for nonnegative curvature case. This idea has been taken up by Kasue to study the structure of complete open manifolds with asympttically nonnegative curvature [14]. Motivated by these works, we will define an idela boundary of a general noncompact manifold M, and study its structure.

  • PDF

COMPLETE NONCOMPACT SUBMANIFOLDS OF MANIFOLDS WITH NEGATIVE CURVATURE

  • Ya Gao;Yanling Gao;Jing Mao;Zhiqi Xie
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.183-205
    • /
    • 2024
  • In this paper, for an m-dimensional (m ≥ 5) complete non-compact submanifold M immersed in an n-dimensional (n ≥ 6) simply connected Riemannian manifold N with negative sectional curvature, under suitable constraints on the squared norm of the second fundamental form of M, the norm of its weighted mean curvature vector |Hf| and the weighted real-valued function f, we can obtain: • several one-end theorems for M; • two Liouville theorems for harmonic maps from M to complete Riemannian manifolds with nonpositive sectional curvature.

ON A TOTALLY UMBILIC HYPERSURFACE OF FIRST ORDER

  • Kim, Jaeman
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.465-473
    • /
    • 2017
  • In this paper, we define a totally umbilic hypersurface of first order and show that a totally umbilic hypersurface of first order in an Einstein manifold has a parallel second fundamental form. Furthermore we prove that a complete, simply connected and totally umbilic hypersurface of first order in a space of constant curvature is a Riemannian product of Einstein manifolds. Finally we show a proper example which is a totally umbilic hypersurface of first order but not a totally umbilic hypersurface.

MORSE INEQUALITIES FOR MANIFOLDS WITH BOUNDARY

  • Zadeh, Mostafa Esfahani
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.123-134
    • /
    • 2010
  • The aim of this paper is to provide a proof for a version of the Morse inequalities for manifolds with boundary. Our main results are certainly known to the experts on Morse theory, nevertheless it seems necessary to write down a complete proof for it. Our proof is analytic and is based on the J. Roe account of Witten's approach to Morse Theory.

NONCONSTANT WARPING FUNCTIONS ON EINSTEIN LORENTZIAN WARPED PRODUCT MANIFOLDS

  • Jung, Yoon-Tae;Choi, Eun-Hee;Lee, Soo-Young
    • Honam Mathematical Journal
    • /
    • v.40 no.3
    • /
    • pp.447-456
    • /
    • 2018
  • In this paper, we consider nonconstant warping functions on Einstein Lorentzian warped product manifolds $M=B{\times}_{f^2}F$ with an 1-dimensional base B which has a negative definite metric. As the results, we discuss that on M the resulting Einstein Lorentzian warped product metric is a future (or past) geodesically complete one outside a compact set.

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.547-554
    • /
    • 2021
  • The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.