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COMPLETE NONCOMPACT SUBMANIFOLDS OF

MANIFOLDS WITH NEGATIVE CURVATURE

Ya Gao, Yanling Gao, Jing Mao, and Zhiqi Xie

Abstract. In this paper, for an m-dimensional (m ≥ 5) complete non-
compact submanifold M immersed in an n-dimensional (n ≥ 6) simply

connected Riemannian manifold N with negative sectional curvature, un-

der suitable constraints on the squared norm of the second fundamental
form of M , the norm of its weighted mean curvature vector |H f | and the

weighted real-valued function f , we can obtain:

• several one-end theorems for M ;
• two Liouville theorems for harmonic maps from M to complete Rie-

mannian manifolds with nonpositive sectional curvature.

1. Introduction

As we know, Hodge theory is an important and useful tool in the study of
the topology of compact Riemannian manifolds. However, the Hodge theory
does not work in noncompact manifolds. But, luckily, as revealed by Anderson
[1] and Dodziuk [16], the L2-Hodge theory works well in certain noncompact
cases. In the range of this philosophy, interesting results for L2 harmonic 1-
forms on stable minimal hypersurfaces could be expected. In fact, by applying
the nonexistence of L2 harmonic 1-forms, Palmer [38] showed that:

• If there exists a codimension-one cycle on a complete minimal hyper-
surface M in Euclidean space, which does not separate M, then M is
unstable.

Miyaoka, by mainly using Bochner’s vanishing technique, proved that a com-
plete noncompact stable minimal hypersurface in a nonnegatively curved man-
ifold has no nontrivial L2 harmonic 1-forms (see [37] for details). We prefer
to refer [6, 39] to readers for a survey about important conclusions related to
L2 harmonic forms on noncompact manifolds. The L2 theory is well studied,
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while the Lp theory is less developed in the case p ̸= 2. So, it is quite natural
to ask:

• (Problem A). Is it feasible to improve interesting results about L2 har-
monic forms on noncompact manifolds to the situation of Lp harmonic
forms? What is the main difficulty?

The purpose of this paper is trying to give affirmative answer and nice examples
to Problem A.

Through a nice combination of an existence theorem for nonconstant
bounded harmonic functions with finite energy (see [4]) and a Liouville theorem
for harmonic functions in [40] (proven by Schoen and Yau), Cao, Shen and Zhou
showed that a complete stable minimal hypersurface in an (m+1)-dimensional
(m ≥ 3) Euclidean space Rm+1 has only one end. By using Cao-Shen-Zhu’s
this idea, Wang and Xia [43, Theorems 1.1 and 1.2] can obtain the nonexis-
tence result of nontrivial L2 harmonic forms and some one-end theorems for
open submanifolds in a simply connected Riemannian manifold with negative
sectional curvature. Naturally, one can propose Problem A with respect to
Wang-Xia’s this conclusion, that is, Could Wang-Xia’s nonexistence result of
nontrivial L2 harmonic forms in [43] be improved to the Lp situation? The
answer is affirmative.

Before stating our main results, we need to introduce some notations. Let
N be an n-dimensional Riemannian manifold, k ∈ {1, . . . , n − 1} and r0 be a
fixed real number. We say that the k-th Ricci curvature of N is greater than or
equal to r0 (resp., greater than r0), if for any p0 ∈ N and any k+1 orthonormal

vectors v, e1, . . . , ek ∈ Tp0
N , we have

∑k
i=1 sec(v∧ei) ≥ r0 (resp., > r0), where

Tp0N is the tangent space (of N) at the point p0, and for each i = 1, . . . , k,
sec(v ∧ ei) denotes the sectional curvature of the plane spanned by v and ei.
Denote this fact by Ric(k)(N) ≥ r0 (resp., > r0). It is clear that Ric(1)(N) ≥
r0 (resp., > r0) means sec(N) ≥ r0 (resp., > r0) and Ric(n−1)(N) ≥ r0 (resp., >
r0) is equivalent to the fact that the Ricci curvature of N is not less than r0,
i.e., Ric(N) ≥ r0 (resp., > r0) with Ric(·) the Ricci tensor1. We refer readers
to [14, 20, 21, 28, 43] for some interesting results about manifolds with positive
k-th Ricci curvature. Our main results are:

Theorem 1.1. Let N be a complete simply connected Riemannian n-manifold
(n ≥ 6) with sectional curvature KN ≤ −1 and letM be a complete noncompact
m-dimensional (m ≥ 5) submanifold immersed in N . Assume that the (m−1)-
th Ricci curvature of N is no less than −(m − 1)c for some constant c ∈
[1, m4 ). Denote by S and Hf = H + 1

m (∇f)⊥ the squared norm of the second
fundamental form and the weighted mean curvature vector of M , respectively,
where H is the mean curvature vector of M , f is a smooth real-valued function
defined on M , (∇f)⊥ is the projection of ∇f onto the normal bundle T⊥M ,

1 By abuse of notation, we will also use Ric(·) to denote the Ricci tensor on submanifolds

of N .
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and

sup
x∈M

|∇f |(x) ≤ c+ <
2(m− 1)

√
c√

m

for some nonnegative constant c+, with ∇ the gradient operator2 of N . For any
constant 1 < p <∞, suppose that one of the following conditions was satisfied:

(i) There exists a nonnegative constant d < (m−1)(
√
m−2

√
c)

m3/2 such that

(1.1) sup
x∈M

|Hf |(x) ≤ d

and
(1.2)

sup
x∈M

B(S, |Hf |)(x) <
((p− 1)(m− 1) + 1) (m− 1−md− c+)

2 − p2(m− 1)2c

p2(m− 1)
,

where
(1.3)

B(S, |Hf |)

:= m−1
m S − 2(m− 1)|Hf |2 − 2(m−1)

m2 |(∇f)⊥|2 + 4(m−1)
m ⟨Hf , (∇f)⊥⟩

+ (m−2)|Hf |
√

m−1
m (S−m|Hf |2)−m−1

m2 |(∇f)⊥|2 + 2(m−1)
m ⟨Hf , (∇f)⊥⟩

+ m−2
m |(∇f)⊥|

√
m−1
m (S−m|Hf |2)−m−1

m2 |(∇f)⊥|2 + 2(m−1)
m ⟨Hf , (∇f)⊥⟩.

(ii) There exists a nonnegative constant d < (m−1)(
√
m−2

√
c)

m3/2 such that

(1.4) sup
x∈M

|Hf |(x) ≤ d,

(1.5)

sup
x∈M

S(x) <
((2p− 2)(m− 1) + 2) (m− 1−md− c+)

2 − 2p2(m− 1)2c

p2(m− 1)3/2
.

Then there exist no nontrivial Lp harmonic 1-forms on M and M has only one
end.

Remark 1.2. Naturally, one might define the so-called weighted mean curvature
(or, f -mean curvature) as Hf = H − 1

m ⟨∇f, η⃗⟩, where H is the regular mean
curvature of the submanifold M and η⃗ is its outward unit normal vector. One
can find that in some literatures the factor 1

m would be removed (i.e., do not
directly embody the dimensional information of submanifolds). However, there
is no essential difference between keeping the factor 1

m and removing it. One
can see, e.g., [24,44,45] for the notions of weighted mean curvature vector and
weighted mean curvature. Besides, (under suitable constraints on weighted
mean curvature) some interesting results have been proven therein.

2 Without specification and in order to avoid repetition, in the sequel ∇ denotes the

gradient operator on N .
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Theorem 1.3. Let N be a complete simply connected Riemannian n-manifold
(n ≥ 6) with sectional curvature KN ≤ −1 and letM be a complete noncompact
m-dimensional (m ≥ 5) submanifold immersed in N . Assume that the (m−1)-
th Ricci curvature of N is no less than −(m−1)c for some constant c ∈ [1, m4 ),

and supx∈M |∇f |(x) ≤ c+ < 2(m−1)
√
c√

m
for some nonnegative constant c+. For

any 1 < p <∞, there exist positive constants c1, c2, c3, c4 depending only on m
such that if

sup
x∈M

|Hf | ≤ c1,

∫
M

|Hf |m ≤ c2,∫
M

(
S −m|Hf |2 +m|(∇f)⊥|2

)m
2 ≤ c3,∫

M

|∇f |m ≤ c4, c4 ≤ mmc2,

(1.6)

then M admits no nontrivial Lp harmonic 1-forms and has only one end.

Remark 1.4. (1) Clearly, if M was taken to be an f -minimal submanifold in a
hyperbolic space, by Theorems 1.1 and 1.3 one has:

• Let M be a complete noncompact m-dimensional (m ≥ 5) f -minimal
submanifold immersed in Hn(−1), the n-dimensional (n ≥ 6) hyper-
bolic space of constant sectional curvature −1. As in Theorem 1.1, f is
a smooth real-valued function defined on M , (∇f)⊥ is the projection

of ∇f onto the normal bundle T⊥M , supx∈M |∇f |(x) ≤ c+ < 2(m−1)√
m

for some nonnegative constant c+, and denote by S the squared norm
of the second fundamental form of M .

(i) For any constant 1 < p <∞, if

sup
x∈M

[
m−1
m S − 2(m−1)

m2 |(∇f)⊥|2 + m−2
m |(∇f)⊥|

√
m−1
m S − m−1

m2 |(∇f)⊥|2
]
(x)

<
((p−1)(m−1)+1)(m−1−c+)

2−p2(m−1)2

p2(m−1) ,

then there exist no nontrivial Lp harmonic 1-forms on M and M has
only one end. Especially, when f degenerates into a constant function,
c+ can be chosen to be c+ ≡ 0 and correspondingly the above inequality
for the squared norm of the second fundamental form becomes

sup
x∈M

S(x) <
m
[
((p− 1)(m− 1) + 1)− p2

]
p2

.

Of course, in this setting, the nonexistence of nontrivial Lp harmonic
1-forms and the existence of only one-end on minimal submanifold M
can still be obtained.
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(ii) For any constant 1 < p <∞, there exist positive constants c3, c4
depending only on m such that if∫

M

(
S +m|(∇f)⊥|2

)m
2 ≤ c3,

∫
M

|∇f |m ≤ c4,

then M admits no nontrivial Lp harmonic 1-forms and has only one
end. Especially, when f degenerates into a constant function, c+ can
be chosen to be c+ ≡ 0 and the above assumption can be simplified as∫

M

S
m
2 ≤ c3

for some positive constant c3 depending only on m.

(2) In (1.6), the condition
∫
M

|∇f |m ≤ c4 implies that there does not exist

any positive constant c+ > 0 such that |∇f | ≥ c+ holds on unbounded domains
ofM . Speaking roughly, |∇f | cannot be away from zero on unbounded domains
of M .

(3) In the past 10 years, the study of f -minimal submanifolds attracts geome-
ters’ attention and many interesting results have been obtained. For instance,

• obviously, an f -minimal surface in the 3-dimensional Euclidean space
R3 implies its mean curvature vector satisfiesH = − 1

2 (∇f)
⊥. We know

that a self-shrinker of mean curvature flow (MCF) in R3 is actually
an immersed surface in R3 satisfying H = 1

2 ⟨x, n⃗⟩, where x is the

position vector in R3 and n⃗ is the unit normal vector of the surface.
Therefore, a self-shrinker of MCF in R3 is an f -minimal surface with

f = |x|2
2 . Self-shrinkers are self-similar solutions to MCF and play an

important role in the study of type-I singularities of the MCF. Many
interesting classification results for self-shrinkers have been shown –
see, e.g., [3, 10,11,13,15] and references therein.

• Li and Wei [32] proved a compactness theorem for closed embedded
f -minimal surfaces of fixed topology in a closed 3-manifold with posi-
tive Bakry-Émery Ricci curvature. They also gave a Lichnerowicz type
lower bound of the first eigenvalue of weighted Laplacian on a com-
pact manifold with positive Bakry-Émery Ricci curvature, and more-
over showed that the lower bound is achieved only if the manifold is
isometric to the Euclidean sphere of same dimension.

Hence, it is interesting and meaningful to investigate the geometry and topology
of f -minimal submanifolds in a prescribed ambient space. This is exactly the
reason why we prefer to clearly give a special case of Theorems 1.1 and 1.3 in
the first item (1) of this remark – the nonexistence of nontrivial Lp harmonic
1-forms and the existence of only one-end on f -minimal submanifolds in the
hyperbolic space.

The approaches for proving Theorems 1.1 and 1.3 can be also used to get
Liouville type theorems for harmonic maps from submanifolds in manifolds of
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negative curvature. Harmonic maps are critical points of the energy functional
defined on the space of maps between two Riemannian manifolds, and the
Liouville type properties of harmonic maps have been studied extensively (see,
e.g., [9,18,19,25,27,42]). In [40], Schoen and Yau proved that a harmonic map
of finite energy from a complete Riemannian manifold with nonnegative Ricci
curvature to a complete manifold with nonpositive sectional curvature must be
constant. Using this Liouville theorem, they can show that:

• Any smooth map of finite energy from a complete Riemannian manifold
with nonnegative Ricci curvature to a compact manifold with nonposi-
tive sectional curvature is homotopic to constant on each compact set.

Comparing with Schoen-Yau’s important result above, we can prove the fol-
lowing Liouville-type theorems:

Theorem 1.5. Let N be a complete simply connected Riemannian n-manifold
(n ≥ 6) with sectional curvature KN ≤ −1 and let Q be a complete s-dimension-
al Riemannian manifold with nonpositive sectional curvature. Let M be a com-
plete noncompactm-dimensional (m ≥ 5) submanifold immersed in N . Assume
that (m−1)-th Ricci curvature of N is no less than −(m−1)c for some constant

c ∈
[
1, (2ms+1)(m−1)

8ms

)
. Denote by S and Hf = H+ 1

m (∇f)⊥ the squared norm

of the second fundamental form and the weighted mean curvature vector of M ,
respectively, where H is the mean curvature vector of M , f is a smooth real-
valued function defined on M, (∇f)⊥ is the projection of ∇f onto the normal
bundle T⊥M , and

sup
x∈M

|∇f |(x) ≤ c+ <

√
8ms(m− 1)c

2ms+ 1

for some nonnegative constant c+. Suppose that one of the following items was
satisfied:

(i) There exists a nonnegative constant d < m−1
m −

√
8s(m−1)c
m(2ms+1) such that

sup
x∈M

|Hf |(x) ≤ d(1.7)

and

sup
x∈M

B(S, |Hf |(x)) <
(2ms+ 1) (m− 1−md− c+)

2 − 8ms(m− 1)c

8ms
,(1.8)

where B(S, |Hf |) was defined by (1.3).

(ii) There exists a nonnegative constant d < m−1
m −

√
8s(m−1)c
m(2ms+1) such that

sup
x∈M

|Hf |(x) ≤ d(1.9)

and

sup
x∈M

S(x) <
(2ms+ 1) (m− 1−md− c+)

2 − 8ms(m− 1)c

4ms(m− 1)1/2
.(1.10)
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Then any harmonic map from M to Q with finite energy is constant.

Theorem 1.6. Let N be a complete simply connected Riemannian n-manifold
(n ≥ 6) with sectional curvature KN ≤ −1 and let Q be a complete s-dimension-
al Riemannian manifold with nonpositive sectional curvature. Let M be a com-
plete noncompact m-dimensional (m ≥ 5) submanifold immersed in N . As-
sume that (m− 1)-th Ricci curvature of N is no less than −(m− 1)c for some

constant c ∈
[
1, (2ms+1)(m−1)

8ms

)
, and supx∈M |∇f |(x) ≤ c+ <

√
8ms(m−1)c

2ms+1 for

some nonnegative constant c+. There exist positive constants d1, d2, d3, d4 de-
pending only on m and s such that if

sup
x∈M

|Hf | ≤ d1,

∫
M

|Hf |m ≤ d2,∫
M

(
S −m|Hf |2 +m|(∇f)⊥|2

)m
2 ≤ d3,∫

M

|∇f |m ≤ d4, d4 ≤ mmd2,

(1.11)

then any harmonic map from M to Q with finite energy is constant.

Remark 1.7. Similar to (2) of Remark 1.4, the assumption
∫
M

|∇f |m ≤ d4 in

(1.11) implies that |∇f | cannot be away from zero on unbounded domains of
M .

Some useful facts will be mentioned in Section 2, and proofs of the above
main results will be shown in Section 3.

2. Preliminaries

In this section, we list some known facts needed for proving our results. Let
M be a complete noncompactm-dimensional Riemannian manifold. For a fixed
point x0 ∈ M , we denote by B(x0, r) the open geodesic ball of radius r with
center x0. Let λ1(B(x0, r)) be the first eigenvalue of the Laplacian of B(x0, r)
with Dirichlet boundary condition. Denote by λ1(M) the first eigenvalue of M
which can be defined as

λ1(M) := lim
R→+∞

λ1(B(x0, R)).(2.1)

It is easy to check that by the Domain Monotonicity Principle (see, e.g., [7, pp.
17–18]), the above limit exists and does not depend on the choice of the center
x0. Thus λ1(M) is well defined.

By introducing a geometric constant c(Ω) for bounded domains Ω on smooth
Riemannian manifolds, which depends on vector fields with positive divergence
(see [2, Definition 2.1] for details), (and estimating the gradient of a distance
function in terms of c(Ω)) Bessa and Montenegro [2, Theorem 4.3] can obtain
estimates of eigenvalue of balls inside the cut locus and of domains Ω ⊂ M ∩
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BN (p, r) in submanifolds M ⊂φ N with locally bounded mean curvature3.
Then by letting the radius of geodesic balls tends to infinity, they have:

Lemma 2.1 ([2, Corollary 4.4]). Let N be a complete simply connected Rie-
mannian manifold with sectional curvature KN ≤ −1 and let M be a m-
dimensional complete noncompact submanifold immersed in N . Assume that
the mean curvature vector of M satisfies |H|(x) ≤ l < m−1

m , ∀x ∈M . Then

(2.2) λ1(M) ≥ (m− 1−ml)2

4
.

Remark 2.2. (1) The strictly positive lower bound estimate for λ1(M) in (2.2)
generalizes McKean’s classical lower bound in [35] and Cheung-Leung’s esti-
mate in [12].

(2) As we know, λ1 (Rn) = 0 and λ1 (Hn(−1)) = (n−1)2

4 , with n ≥ 2.
The latter one was actually shown by Mckean in [35]. By Cheng’s eigenvalue
comparison theorem [8], it is easy to know that for a complete noncompact

n-manifold M̃n with sectional curvature bounded from above by 0 (resp., −1),

then λ1(M̃n) ≥ 0 (resp., λ1(M̃n) ≥ (n−1)2

4 ). Furthermore, by Cheng-type
eigenvalue comparison theorem obtained by Mao and his collaborators (see

[22, Theorem 4.4]), one knows that this lower bound estimate for λ1(M̃n) can

be improved to the situation that the complete noncompact n-manifold M̃n

only has a radial sectional curvature upper bound 0 (resp., −1) with respect

to some point in M̃n.
(3) By (2.1), one easily has λ1(M) ≥ 0. However, from examples given in

(2) of Remark 2.2, one knows that for a complete noncompact Riemannian
manifold M , in some settings, λ1(M) > 0. Speaking roughly, the spectral
quantity λ1(M) somehow reveals the geometry and topology of the complete
noncompact Riemannian manifoldM considered. In fact, Schoen-Yau [41, page
106] suggested that it is an important question to find conditions which will
imply λ1(M) > 0. Speaking in other words, manifolds with λ1(M) > 0 might
have some special geometric properties. There are many interesting results
supporting this. For instance, Cheung-Leung [12] proved that if M is an n-
dimensional complete minimal submanifold in the hyperbolicm-space Hm(−1),

then λ1(M) ≥ (n−1)2

4 > 0, and moreover, M is non-parabolic, i.e., there exists
a nonconstant bounded subharmonic function on M . They also showed that
if furthermore M has at least two ends, then there exists on M a nonconstant
bounded harmonic function with finite Dirichlet energy.

(4) Inspired by Schoen and Yau [41, page 106], Du and Mao [17] firstly
showed that one can ask the same question for the weighted Laplacian (or
drifting Laplacian) and the nonlinear p-Laplacian (1 < p <∞), and moreover,

3 Here, M ⊂φ N means M is an immersed submanifold of the given complete manifold
N by the immersion φ : M ↪→ N , and BN (p, r) denotes the geodesic ball in N with center p

and radius r. For more details, please check Bessa-Montenegro’s article [2].
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they successfully gave two interesting (strictly positive) lower bounds for the
first eigenvalue of submanifolds with bounded mean curvature in a hyperbolic
space, (one of) which generalizes Cheung-Leung’s lower bound estimate in [12].
After this, Mao and his collaborators have two continuous works on this topic
– see [33,34] for details.

Lemma 2.1, combining with the discussions in [4], can be used to show the
following existence theorem for harmonic functions with finite Dirichlet energy.

Lemma 2.3. Let M be given as in Lemma 2.1. If M has at least two ends,
then there exists on M a nonconstant bounded harmonic function with finite
Dirichlet energy.

We also need the following fact:

Lemma 2.4. ([5]) Let z1, . . . , zm be m real numbers. Then we have

(2.3)

m∑
i=2

z1zi ≤
√
m− 1

2

m∑
i=1

z2i .

Now we recall some known facts about harmonic maps between Riemannian
manifolds.

Let M and Q be complete Riemannian manifolds of dimension m and s,
respectively. Denote by y : M → Q be a harmonic map from M to Q. Let
{ei}mi=1 and {e′α}sα=1 be local orthonormal frame fields of M and Q, respec-
tively. Suppose that {ωi}mi=1 and {θα}sα=1 are the dual coframes of {ei}mi=1 and
{e′α}sα=1, respectively, and {ωij}mi,j=1 and {θαβ}sα,β=1 are the corresponding
connection forms. Denote by Rijkl and Kαβγδ the curvature tensors of M and
Q, respectively. Then we have the structure equations as follows:

dωi =
∑
j

ωij ∧ ωj ,

ωij + ωji = 0,

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

and 

dθα =
∑
β

θαβ ∧ θβ ,

θαβ + θβα = 0,

dθαβ =
∑
γ

θαγ ∧ θγβ − 1

2

∑
γ,δ

Kαβγδθγ ∧ θδ.

Define yαi, 1 ≤ α ≤ s, 1 ≤ i ≤ m, by

y∗(θα) =
∑
i

yαiωi.(2.4)
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Then the energy density e(y) is given by

e(y) =
∑
α,i

y2αi.

Taking the exterior differentiation of (2.4), we can get

y∗(dθα) =
∑
i

(dyαi ∧ ωi + yαidωi) ,

which gives

∑
i

dyαi −∑
j

yαjωij −
∑
β

y∗(θαβ)yβi

 ∧ ωi = 0.(2.5)

Define yαij by

dyαi +
∑
β

yβiy
∗(θβα) +

∑
j

yαjωji :=
∑
j

yαijωj .(2.6)

Then (2.5) and (2.6) imply that yαij = yαji and y is harmonic means∑
i

yαii = 0, ∀α = 1, . . . , s.

Exterior differentiating (2.6), we have

∑
l

dyαil +∑
j

(yαijωjl + yαjlωji) +
∑
β

yβily
∗(θβα)

 ∧ ωl

=
1

2

∑
j,k,l

Rijklyαjωk ∧ ωl +
1

2

∑
β,γ,δ,k,l

Kαβγδyβiyγkyδlωk ∧ ωl.

(2.7)

Define∑
k

yαijkωk := dyαij +
∑
k

(yαikωkj + yαkjωki) +
∑
β

yβijy
∗(θαβ),

and then (2.7) implies that

yαikl − yαilk =
∑
j

Rijlkyαj +
∑
β,γ,δ

Kαβγδyβiyγlyδk.

Set e = e(y) and let ∆ be the Laplace operator acting on functions on M .
From the above equality, one can easily get the following Bochner type formula
for harmonic maps (which was first derived by Eells-Sampson [19]):

1

2
∆e =

∑
α,i,j

y2αij +
∑
α,i,j

Rijyαiyαj −
∑

α,β,γ,δ,i,j

Kαβγδyαiyβjyγiyδj ,(2.8)
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where Rij stands for component of the Ricci tensor of M . Besides, it is also
known that (cf. [40]) ∑

α,i,j

y2αij ≥
(
1 +

1

2ms

)
|∇

√
e|2.(2.9)

3. Proofs of the main results

All the proofs would be shown clearly in this section.

Proof of Theorem 1.1. Firstly, we consider the case (i). Denote by h the second
fundamental form of M in N which is given by

h(X,Y ) = ∇XY −∇XY, ∀X,Y ∈ TM,

where ∇ is the Riemannian connection of M . Take an orthonormal frame field
{e1, . . . , em} on M . The mean curvature vector of M can be written as

H =
1

m

∑
i

h(ei, ei).

Let us deduce a lower bound for the Ricci curvature of M . From the Gauss
equation and Ric(m−1)(N) ≥ −(m− 1)c, we know that the Ricci curvatures of
M in the directions ej , j = 1, . . . ,m, satisfy

Ric(ej , ej)

=

m∑
k=1,k ̸=j

K(ej ∧ ej) + ⟨mH, h(ej , ej)⟩ −
m∑

k=1

⟨h(ek, ej), h(ek, ej)⟩

≥ − (m− 1)c+ ⟨mH, h(ej , ej)⟩ −
m∑

k=1

⟨h(ek, ej), h(ek, ej)⟩,

(3.1)

where K(ej ∧ ek) denotes the sectional curvature of N on the plane ej ∧ ek
spanned by vectors ej and ek, ⟨·, ·⟩ is the inner product induced by the metric
of N .

Set
Q =

∑
k

|h(ek, ek)|2.

For any fixed j ∈ {1, . . . ,m}, since

|mH− h(ej , ej)|2 =

∣∣∣∣∣∣
∑
k ̸=j

h(ek, ek)

∣∣∣∣∣∣
2

≤

∑
k ̸=j

|h(ek, ek)|

2

≤ (m− 1)
∑
k ̸=j

|h(ek, ek)|2
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= (m− 1)
(
Q− |h(ej , ej)|2

)
,

we have

m2|H|2 − (m− 1)Q+m|h(ej , ej)|2 − 2m⟨H, h(ej , ej)⟩ ≤ 0.(3.2)

It is also easy to see from∑
i

(h(ei, ei)−H) = 0,
∑
i

|h(ei, ei)−H|2 = Q−m|H|2,

that

|h(ej , ej)−H|2 ≤ m− 1

m

(
Q−m|H|2

)
,(3.3)

which, combining with (3.2), gives

0 ≥ m
(
|h(ej , ej)|2 −m⟨H, h(ej , ej)⟩

)
+ (m− 2)m⟨h(ej , ej)−H,H⟩+ 2(m− 1)m|H|2 − (m− 1)Q

≥ m
(
|h(ej , ej)|2 −m⟨H, h(ej , ej)⟩

)
− (m− 2)m|H|

√
m− 1

m
(Q−m|H|2) + 2(m− 1)m|H|2 − (m− 1)Q.

Hence,

⟨mH, h(ej , ej)⟩ − |h(ej , ej)|2

≥ − (m− 2)|H|
√
m− 1

m
(Q−m|H|2) + 2(m− 1)|H|2 − m− 1

m
Q.

Substituting the above inequality into (3.1) and noticing

S =
∑
i,j

|h(ei, ej)|2

= Q+ 2
∑
i<j

|h(ei, ej)|2,
(3.4)

one gets

Ric(ej , ej)

≥ − (m− 1)c− m−1
m S + 2(m− 1)|H|2 − (m− 2)|H|

√
m−1
m (S −m|H|2)

= − (m− 1)c− m−1
m S + 2(m− 1)|Hf − 1

m (∇f)⊥|2

− (m− 2)|Hf − 1
m (∇f)⊥|

√
m−1
m

(
S −m|Hf − 1

m (∇f)⊥|2
)

≥ − (m−1)c−m−1
m S+2(m−1)|H f |2+ 2(m−1)

m2 |(∇f)⊥|2− 4(m−1)
m ⟨H f , (∇f)⊥⟩

− (m− 2)|H f |
√

m−1
m (S −m|H f |2)− m−1

m2 |(∇f)⊥|2 + 2(m−1)
m ⟨H f , (∇f)⊥⟩

− m−2
m |(∇f)⊥|

√
m−1
m (S −m|H f |2)− m−1

m2 |(∇f)⊥|2 + 2(m−1)
m ⟨H f , (∇f)⊥⟩

= − (m− 1)c−B(S, |H f |).
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Define a quantity B(S, |H f |) as in (1.3). Since the choice of the frame field
{e1, . . . , em} is arbitrary, we conclude that the Ricci curvature of M satisfies

(3.5) Ric(M) ≥ −(m− 1)c−B(S, |Hf |).

For any Lp-harmonic 1-form ω on M , 1 < p <∞, denote by g = |ω| the length
of ω. Let X be the vector field on M dual to ω. The Bochner formula (see,
e.g., [29–31]) implies that

(3.6)
1

2
∆g2 ≥ Ric(X,X) + |∇ω|2.

It is also known that (cf. [30, 31])

(3.7) |∇ω|2 ≥ m

m− 1
|∇g|2.

Moreover,

(3.8)
1

2
∆g2 = g∆g + |∇g|2.

For any positive number 1 < p <∞, we have

g
p
2∆g

p
2 = g

p
2 div

(
∇(g

p
2 )
)

= g
p
2 div

(p
2
g

p
2−1∇g

)
=
p

2

(p
2
− 1
)
gp−2|∇g|2 + p

2
gp−2g∆g

=
p− 2

p
|∇(g

p
2 )|2 + p

2
gp−2g∆g.

(3.9)

From (3.5)-(3.7) and (3.8)-(3.9), we have

g
p
2∆g

p
2 − p− 2

p
|∇(g

p
2 )|2 + p

2
((m− 1)c+B(S, |Hf |)) gp ≥ p

2(m− 1)
gp−2|∇g|2

=
2

p(m− 1)
|∇(g

p
2 )|2,

that is,

(3.10) g
p
2∆g

p
2 +

p

2
((m−1)c+B(S, |Hf |)) gp ≥

(
1− 2

p
+

2

p(m−1)

)
|∇(g

p
2 )|2.

Fix a point x0 ∈M and choose ϕ to be a nonnegative cut-off function with the
properties

|∇ϕ| ≤ 1

r
, ϕ =

{
1 on B(x0, r),

0 on M \B(x0, 3r).
(3.11)

Set

q = sup
x∈M

B(S, |Hf |)(x),
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and then (1.2) gives

(3.12)
2p((m− 1)c+ q)

(m− 1−md− c+)
2 < 2− 2

p
+

2

p(m− 1)
.

Multiplying (3.10) by ϕ2 and integrating over M , one gets

(3.13)

(
1− 2

p
+

2

p(m− 1)

)∫
M

|∇(g
p
2 )|2ϕ2

≤
∫
M

g
p
2∆g

p
2 ϕ2 +

p

2
((m− 1)c+ q)

∫
M

gpϕ2.

Besides, the divergence theorem gives us

(3.14)

∫
M

g
p
2△g

p
2 ϕ2 = −2

∫
M

g
p
2 ϕ⟨∇ϕ,∇(g

p
2 )⟩ −

∫
M

|∇(g
p
2 )|2ϕ2.

Substituting (3.14) into (3.13) yields(
1− 2

p
+

2

p(m− 1)

)∫
M

|∇(g
p
2 )|2ϕ2

≤ − 2

∫
M

g
p
2 ϕ⟨∇ϕ,∇(g

p
2 )⟩ −

∫
M

|∇(g
p
2 )|2ϕ2

+
p

2
((m− 1)c+ q)

∫
M

gpϕ2.

(3.15)

Since supx∈M |Hf | ≤ d, supx∈M |∇f |(x) ≤ c+ < 2(m−1)
√
c√

m
, we know from

Lemma 2.1 that

λ1(M) ≥ (m− 1−md− c+)
2

4
,

which implies

(3.16)

∫
M

gpϕ2 ≤ 4

(m− 1−md− c+)
2

∫
M

|∇(ϕg
p
2 )|2.

Set

l =
2p ((m− 1)c+ q)

(m− 1−md− c+)
2

and take an ϵ > 0 so that

l + ϵ|l − 1| < 2− 2

p
+

2

p(m− 1)
.

Since

2

∣∣∣∣∫
M

g
p
2 ϕ⟨∇ϕ,∇(g

p
2 )⟩
∣∣∣∣ ≤ ϵ

∫
M

|∇(g
p
2 )|2ϕ2 + 1

ϵ

∫
M

|∇ϕ|2gp,
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it follows from (3.15) and (3.16) that(
1− 2

p
+

2

p(m− 1)

)∫
M

|∇(g
p
2 )|2ϕ2

≤ l

∫
M

|∇(g
p
2 ϕ)|2 − 2

∫
M

g
p
2 ϕ⟨∇ϕ,∇(g

p
2 )⟩ −

∫
M

|∇(g
p
2 )|2ϕ2

= l

∫
M

|∇ϕ|2gp + (l − 1)

∫
M

|∇(g
p
2 )|2ϕ2 + 2(l − 1)

∫
M

ϕg
p
2 ⟨∇ϕ,∇(g

p
2 )⟩

≤ (l − 1 + ϵ|l − 1|)
∫
M

|∇(g
p
2 )|2ϕ2 +

(
l +

|l − 1|
ϵ

)∫
M

|∇ϕ|2gp,

that is,(
2− 2

p
+

2

p(m−1)
− (l + ϵ|l−1|)

)∫
M

|∇(g
p
2 )|2ϕ2 ≤

(
l +

|l−1|
ϵ

)∫
M

|∇ϕ|2gp,

which implies(
2− 2

p
+

2

p(m− 1)
− (l + ϵ|l − 1|)

)∫
B(x0,r)

|∇(g
p
2 )|2

≤
(
2− 2

p
+

2

p(m− 1)
− (l + ϵ|l − 1|)

)∫
M

|∇(g
p
2 )|2ϕ2

≤
(
l +

|l − 1|
ϵ

)∫
M

|∇ϕ|2gp

≤ 1

r2

(
l +

|l − 1|
ϵ

)∫
B(x0,3r)\B(x0,r)

gp.

Since |ω| ∈ Lp(M), the RHS tends to 0 when r → ∞, so g is constant. SinceM
is a complete noncompact submanifold in a Hadamard manifold, it has infinite
volume (cf. [23]). We know from g ∈ Lp(M) that g = 0, 1 < p < ∞. Thus
M admits no nontrivial Lp harmonic 1-form, and there exists no nonconstant
harmonic function with finite Dirichlet energy on M which, combining with
Lemma 2.3, implies that M has only one end.

The case (ii) can be proven by using almost the same argument as the case
(i) except only one thing. That is, in the case (ii), the following lower bound

(3.17) Ric(M) ≥ −(m− 1)c−
√
m− 1

2
S

for the Ricci curvature (cf. [5, Lemma 3.1]) should be used to instead of (3.5).
In fact, by (3.1), one gets

Ric(ej , ej) ≥ − (m− 1)c+

m∑
k=1,k ̸=j

⟨h(ek, ek), h(ej , ej)⟩

−
m∑

k=1,k ̸=j

⟨h(ek, ej), h(ek, ej)⟩,
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so we know from Schwarz inequality and Lemma 2.4 that

Ric(ej , ej) ≥ −(m− 1)c−
m∑

k=1,k ̸=j

|h(ej , ej)||h(ek, ek)| −
m∑

k=1,k ̸=j

|h(ek, ej)|2

≥ −(m− 1)c−
√
m− 1

2

m∑
k=1

|h(ek, ek)|2 −
m∑

k=1,k ̸=j

|h(ek, ej)|2

≥ −(m− 1)c−
√
m− 1

2

 m∑
k=1

|h(ek, ek)|2 + 2

m∑
k=1,k ̸=j

|h(ek, ej)|2


≥ −(m− 1)c−
√
m− 1

2

m∑
i,k=1

|h(ei, ek)|2

= −(m− 1)c−
√
m− 1

2
S.

Summing up the above arguments, the conclusion of Theorem 1.1 follows nat-
urally. □

Proof of Theorem 1.3. SinceM is a complete submanifold in a Hadamard man-
ifold, by [26, 36], there exists a positive constant a which depends only on m
such that (∫

M

|ψ|
m

m−1

)m−1
m

≤ a

(∫
M

(|∇ψ|+ |H||ψ|)
)

for any compactly supported ψ ∈ H1,2(M). So we can get(∫
M

|ψ|
m

m−1

)m−1
m

≤ a

∫
M

(
|∇ψ|+ |Hf − 1

m
(∇f)⊥||ψ|

)
≤ a

∫
M

|∇ψ|+ a

∫
M

((
|Hf |+

1

m
|(∇f)⊥|

)
|ψ|
)

= a

∫
M

(|∇ψ|+ |Hf ||ψ|) +
a

m

∫
M

|(∇f)⊥||ψ|.

By the Hölder’s inequality, one has∫
M

|Hf ||ψ| ≤
(∫

M

|Hf |m
) 1

m
(∫

M

|ψ|
m

m−1

)m−1
m

,

∫
M

|(∇f)⊥||ψ| ≤
(∫

M

|(∇f)⊥|m
) 1

m
(∫

M

|ψ|
m

m−1

)m−1
m

.

Let c2 = 1
(4a)m , and then the assumptions∫

M

|Hf |m ≤ c2,

∫
M

|∇f |m ≤ c4, c4 ≤ mmc2,
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give

1

2a

(∫
M

|ψ|
m

m−1

)m−1
m

≤
∫
M

|∇ψ|.

Replacing ψ by ψ
2(m−1)
m−2 and using the Hölder’s inequality, we can obtain

1

2a

(∫
M

|ψ|
2m

m−2

)m−1
m

≤
∫
M

|∇ψ
2(m−1)
m−2 |

=
2(m− 1)

m− 2

∫
M

|∇ψ||ψ
m

m−2 |

≤ 2(m− 1)

m− 2

(∫
M

|ψ|
2m

m−2

) 1
2
(∫

M

|∇ψ|2
) 1

2

,

which implies (∫
M

|ψ|
2m

m−1

)m−2
m

≤ 16a2(m− 1)2

(m− 2)2

∫
M

|∇ψ|2

=: a′
∫
M

|∇ψ|2.
(3.18)

Here, of course, a′ = 16a2(m−1)2

(m−2)2 . We take the constant c1 in our Theorem 1.3

to be a fixed positive number less than (m−1)(
√
m−2

√
c)

m3/2 and set

(3.19) c3 =

(
5

3mpa′

(
2− 2

p
+

2

p(m− 1)
− 2p(m− 1)c

(m− 1−mc1 − c+)
2

))m
2

.

Since supx∈M |Hf |(x) ≤ c1, supx∈M |∇f |(x) ≤ c+ < 2(m−1)
√
c√

m
, Lemma 2.1

implies that

λ1(M) ≥ (m− 1−mc1 − c+)2

4
.

Thus

(3.20)

∫
M

(g
p
2 ϕ)2 ≤ 4

(m− 1−mc1 − c+)2

∫
M

|∇(g
p
2 ϕ)|2.

Let

A0 =

(∫
M

(S −m|Hf |2 +m|(∇f)⊥|2)m
2

) 2
m

,

and then it follows from∫
M

(S −m|Hf |2 +m|(∇f)⊥|2)m
2 ≤ c3

that

(3.21) l1 =
3pmA0a

′

8
+

2p(m− 1)c

(m− 1−mc1 − c+)
2 < 2− 2

p
+

2

p(m− 1)
.
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One gets from Hölder’s inequality and (3.18) that∫
M

ϕ2(S −m|Hf |2 +m|(∇f)⊥|2)gp

≤
(∫

M

(S −m|Hf |2 +m|(∇f)⊥|2)m
2

) 2
m
(∫

M

(ϕg
p
2 )

2m
m−2

)m−2
m

≤ A0a
′
∫
M

|∇(ϕg
p
2 )|2.

(3.22)

Take a positive ϵ1 > 0 such that

l1 + ϵ1|l1 − 1| < 2− 2

p
+

2

p(m− 1)
.

It follows from (3.5) and the definition of B(S, |Hf |) that

(3.23) Ric(M) ≥ −(m− 1)c− 3m

4

(
S −m|Hf |2 +m|(∇f)⊥|2

)
.

Thus we get from (3.10) that

g
p
2∆g

p
2 +

p

2

(
(m− 1)c+

3m

4

(
S −m|Hf |2 +m|(∇f)⊥|2

))
gp

≥
(
1− 2

p
+

2

p(m− 1)

)
|∇(g

p
2 )|2.

(3.24)

Multiplying (3.24) by ϕ2 and integrating over M , by using (3.19)-(3.23) we
have (

1− 2

p
+

2

p(m− 1)

)∫
M

|∇(g
p
2 )|2ϕ2

≤ p

2
(m− 1)c

∫
M

gpϕ2 +
3pm

8

∫
M

ϕ2(S −m|Hf |2 +m|(∇f)⊥|2)gp

− 2

∫
M

g
p
2 ϕ⟨∇ϕ,∇(g

p
2 )⟩ −

∫
M

ϕ2|∇(g
p
2 )|2

≤ (l1 − 1 + ϵ1|l1 − 1|)
∫
M

|∇(g
p
2 )|2ϕ2 +

(
l1 +

|l1 − 1|
ϵ1

)∫
M

|∇ϕ|2gp.

Hence, we have(
2− 2

p
+

2

p(m− 1)
− (l1 + ϵ1|l1 − 1|)

)∫
M

|∇(g
p
2 )|2ϕ2

≤
(
l1 +

|l1 − 1|
ϵ1

)∫
M

|∇ϕ|2gp,

which implies(
2− 2

p
+

2

p(m− 1)
− (l1 + ϵ1|l1 − 1|)

)∫
B(x0,r)

|∇(g
p
2 )|2
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≤ 1

r2

(
l1 +

|l1 − 1|
ϵ1

)∫
B(x0,3r)\B(x0,r)

gp.

Taking r → ∞, we conclude that g = 0 and so M has only one end. This
completes the proof of Theorem 1.3. □

Proof of Theorem 1.5. Let g : M → Q be a harmonic map with finite energy.
Denote by e the energy density of g. It follows from (2.8), (2.9), (3.5) and the
non-positivity of the sectional curvature of Q that

1

2
∆e ≥

(
1 +

1

2ms

)
|∇

√
e|2 − ((m− 1)c+B(S, |Hf |))e

≥
(
1 +

1

2ms

)
|∇

√
e|2 − ((m− 1)c+ q))e,

(3.25)

where

q = sup
x∈M

B(S, |Hf |)(x).

Multiplying (3.25) by ϕ2 defined in (3.11) and integrating over M result in(
1+

1

2ms

)∫
M

|∇
√
e|2ϕ2 ≤ ((m−1)c+q)

∫
M

eϕ2−2

∫
M

√
eϕ⟨∇

√
e,∇ϕ⟩.(3.26)

Assume that the item (i) holds. Since

(3.27) sup
x∈M

|Hf | ≤ d <
m− 1

m
−

√
8s(m− 1)c

m(2ms+ 1)
,

and

sup
x∈M

|∇f |(x) ≤ c+ <

√
8ms(m− 1)c

2ms+ 1
,

we know from Lemma 2.1 that

λ1(M) ≥ (m− 1−md− c+)
2

4
,

and so

(3.28)

∫
M

eϕ2 ≤ 4

(m− 1−md− c+)
2

∫
M

|∇(
√
eϕ)|2.

By (3.27) and the fact

q <
(2ms+ 1) (m− 1−md− c+)

2 − 8ms(m− 1)c

8ms
,

one has
4((m− 1)c+ q)

(m− 1−md− c+)
2 < 1 +

1

2ms
.
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Let

l2 =
4((m− 1)c+ q)

(m− 1−md− c+)
2 ,

and take an ϵ2 > 0 so that

l2 + ϵ2|l2 − 1| < 1 +
1

2ms
.

Since

2

∣∣∣∣∫
M

√
eϕ⟨∇

√
e,∇ϕ⟩

∣∣∣∣ ≤ ϵ2

∫
M

|∇
√
e|2ϕ2 + 1

ϵ2

∫
M

e|∇ϕ|2,

we have from (3.26) and (3.28) that(
1 +

1

2ms
− (l2 + ϵ2|l2 − 1|)

)∫
M

|∇
√
e|2ϕ2 ≤

(
l2 +

|l2 − 1|
ϵ2

)∫
M

|∇ϕ|2e,

which implies (
1 +

1

2ms
− (l2 + ϵ2|l2 − 1|)

)∫
B(x0,r)

|∇
√
e|2

≤ 1

r2

(
l2 +

|l2 − 1|
ϵ2

)∫
B(x0,3r)\B(x0,r)

e.

When r → ∞, the RHS tends to 0 since g has finite energy. Thus, e is a
constant. We then conclude from E(g) < ∞ and the infinity of the volume of
M that e = 0. Consequently, g is a constant.

In the case of item (ii), the conclusion of Theorem 1.5 can also be proven
by using almost the same argument as in the case of item (i) except the re-
placement of Ricci curvature bound estimate (3.17) to (3.5). This completes
the proof of Theorem 1.5. □

It is not hard to see that by using similar arguments to those in the proofs
of Theorems 1.3 and 1.5, one can easily prove Theorem 1.6 and we prefer to
omit the details here.
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