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LOCALLY HOMOGENEOUS CRITICAL METRICS ON
FOUR-DIMENSIONAL MANIFOLDS

YUuTAE KANG

ABSTRACT. We classify complete, locally homogeneous metrics with fi-
nite volume on four-dimensional manifolds which are critical points for
the squared L?-norm functionals of either the full Riemannian curvature
tensor or the Weyl curvature tensor defined on the space of Riemannian
metrics.

1. Introduction

In Riemannian geometry many interesting metrics are critical points for some
natural geometric functionals defined on a space of Riemannian metrics on a
manifold. In this article, we consider critical metrics for the squared L?-norm
functionals of either the Riemannian curvature tensor or the Weyl curvature
tensor defined on the space of Riemannian metrics on a four-dimensional man-
ifold, and call them R-critical or W-critical metrics, respectively. Some basic
properties of these critical metrics on compact manifolds were described in the
chapter 4 of [2].

These two families of critical metrics contain a number of interesting Rie-
mannian metrics in dimension four. Indeed, Einstein metrics and zero-scalar-
curved half-conformally-flat metrics are R-critical [9]. Actually these are the
only known examples of R-critical metrics as far as we know. Similarly, confor-
mally Einstein metrics and half-conformally-flat metrics are W-critical. Other
source of interest for critical metrics comes from recent works on W-critical
metrics, [1] and [15], in which they were called Bach flat metrics.

A few partial characterizations of critical metrics on compact manifolds were
studied; Kéhler W-critical metrics in [3], Kéhler R-critical metrics in [6] and
R-critical metrics with non-positive sectional curvature in [7]. In an effort to
generalize Jensen’s classification [5] of four-dimensional Einstein homogeneous
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metrics to the R-critical case, Lamontagne has initiated the study of homoge-
neous R-critical metrics in his thesis [8] and obtained a partial result. Indeed,
he proved that any left invariant R-critical metric on a four-dimensional simply
connected unimodular Lie group whose Lie algebra has a non-trivial center is
flat. In general, the classification of R-critical homogeneous metrics seems yet
difficult, see the Remark 1 at the end of Section 4.

In this paper we complete the classification of complete, locally homogeneous
Wh-critical metrics on four-manifolds with finite volume as follows;

Theorem 1. A complete locally homogeneous W-critical metric with finite vol-
ume on a four-manifold is locally isometric to one of the following: an Einstein
symmetric space, the product of the standard two-sphere with constant curva-
ture k and the two-dimensional hyperbolic plane with curvature —k, and the
product of any three-dimensional space with constant curvature and R.

The classification in the case of R-critical metrics is as follows;

Theorem 2. 4 complete locally homogeneous R-critical metric with finite vol-
ume on a four-manifold is locally isometric to either an FEinstein symmetric
space or the product of the standard two-sphere with constant curvature k and
the two-dimensional hyperbolic plane with curvature —k.

In order to prove these two theorems, we view the universal cover M of
a complete locally homogeneous manifold (M, g) with finite volume, together
with the identity component I'som®(g) of the isometry group of the lifted met-
ric § on M as a geometry (M, I som®(§)), see Section 2 for the definition of
geometry and other related notions. Then (M, Isom®(3)) is contained in one
of the twenty four-dimensional maximal geometries in the Filipkiewicz’s clas-
sification list [4, 18]. So (M, Isom®(3)) is one of the maximal geometries or
non-maximal geometries. Each Riemannian manifold of these maximal or non-
maximal 4-dimensional geometries is either a Riemannian symmetric space or
a Lie group with a left-invariant metric. So aside from the easy-to-handle Rie-
mannian symmetric spaces, we have to consider left-invariant metrics on Lie
groups of these geometries. We test the criticality of these metrics case by case.

The system of algebraic equations for critical metrics in each case involves a
number of undetermined structure constants. One may be tempted to simply
use computer software program to resolve all the cases. But in some cases such
blind computation just fails. And we believe that even if it worked, one has to
verify the result by concepts and hand computation which we endeavored in
this article.

The paper is organized as follows. In Section 2 we explain critical metrics
and four-dimensional geometries. In Section 3 we classify complete, locally
homogeneous W-critical metrics with finite volume on four-dimensional mani-
folds. In Section 4 we classify the R-critical case.
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2. Preliminaries

In this section we explain critical metrics on a manifold and review geome-
tries in dimension four.

2.1. R-critical and W-critical metrics

Let (M, g) be a four-dimensional smooth Riemannian manifold with Levi-
Civita connection D. For vector fields X,Y, Z,W on M and a g-orthonormal
frame {e;} of the tangent space T, M at a given point p € M, we define the Rie-
mannian curvature tensor R(X,Y)Z = Dx,y|Z—[Dx, Dy]Z, R(X,Y,Z,W) =
g9(R(X,Y, Z),W), the Ricci tensor (X, Y) :2?21 R(X,e;, Y, e;) and the scalar
curvature s = Zle r(e;,€;). Let z = r — 1sg, the traceless Ricci tensor. In
Besse’s book [2] the Weyl curvature tensor W is defined by

s 1
PV—R—Ep@g—iz@w

where for 2-tensors «, 8 and z, y, z, t in T M, the Kulkarni-Nomizu product
a ® g is the 4-tensor defined by

a© B(z,y,2,t)
= afz, 2)B(y, t) + oy, 1)B(z, 2) — oz, 1)B(y, 2)
- a(y, 2)16(1'7 t)'

Using the abstract index notation, the components of Weyl curvature tensor
are written by

1
Wik = Rijr — 5(7%9]‘1 — Tikgil + T9ik — TitGik)
s
6

(2.1)
+ = (gikgjt — gurgjk)-

Suppose that M is not necessarily compact, and let M denote the space of
smooth Riemannian metrics on M. For a metric gy on M and a precompact
open subset U of M, let M = { g € M|g = go on U¢} where U® is the
complement of U. We define gy to be R-critical if for any precompact open
subset U of M and every smooth curve g; in M with g:}:=0 = go, it satisfies
41, oR{ (9:) = 0 where R’ : M’ — R is the map defined by R¥(g) =
J |Rg|2dvg. Following the computation of [2, p.134] and using the fact that
every element h € T, M{?, the tangent space at g, vanishes along the boundary
of U, we obtain

d - 1
E|t=0,R’gU0 (gt) = /U(25g[())dg)ryo - 2Rgo + '2_|R90|2907h)dvgo
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for any smooth curve g in R} with g:J;=0 = go and %"’flt:g = h. Here
for z,y,2z € T,M and {e;} a go-orthonormal basis for T, M, dforgo(m,y,z) =
D7y, (y, 2)—Dyrgy (2, 2), 82 its formal adjoint, Ry, (z,y) = >k Ba. (2, €, €5,
ex) Ry, (Y, €, €5, ex), and |Rgo|2 = Zi,j,k,z Ry, (es, €5, ex, 1) Ryq (€4, ej, ek €r). It
follows that a metric go is R-critical if and only if it satisfies the equation
260 dD rg, — 2Ry, + 5| Rge |90 = 0 on M. Therefore this R-critical definition is
just the extension of that of Besse [2, p.118] when the manifold M is compact.

Similarly, we define a W-critical metric on any smooth four-dimensional

manifold, so a metric is Wh-critical if and only if it satisfies the equation
26°D*W + 2Wr = 0 on M, where Wr (z,y) = 3, ; W(z, €, 9, e5)r(e;, €5)
for z,y € T,M and {e;} an orthonormal basis for T, M [2, p.135].

On a four-dimensional homogeneous manifold the above R-critical and W-
critical equations can be written as follows, respectively [2, p.134];

° .1
(2.2) 4D*Dr +4ror —4Rr ~ 2R+ §|R|29 =0,

(2.3) 2D*Dr 4 2ror — 2;% —2Wr =0,

(o)
where for z,y € T,M and {e;} an orthonormal basis for T,M, Rr(z,y) =
i Rz €.y, ¢5)r(es, €5) and ror(z,y) = Soir(ze)r(e,y)-

In Section 3 and 4 we calculate the critical equation of a left invariant metric
on a Lie group, so we need some curvature formulas of a left invariant metric
with respect to an orthonormal basis on its Lie algebra. Let G be a Lie group
with a left-invariant metric g and let {X;} be an orthonormal basis on its
Lie algebra. Let [X;, X;] = CEX) and Dx,X; = T'F; X, The constants C;
are called the structure constants and the constants Ffj are called Christoffel
symbols with respect to this basis. Then Christoffel symbols are given by

= 54901, X1, X2) — 9(1Xs, Xel, X5) = 9(1;, X0, X0

1 . )
= 5(Ch —Ch —Ci)

j
and the Riemannian curvature tensor R;ji = R(X;, X;, Xk, X;) is given by

Rijr = g(R(Xs, X;) Xk, X1)
= g(Dix,,x,1Xx — Dx;Dx,Xx + Dx,; Dx, Xx, X1)

= ST (CyT — T T, TSI,
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Therefore the left-hand sides of (2.2) and (2.3) are polynomials of Cf’s. In
particular D*Dr(X;, X;)’s are calculated as follows:

D*Dr(X;, X;) =— Y _ry; X} (Dx,Dx,Xy)

a,b

-2 Z Tka:(DXaXb)X;(DXan)

a,b,
(2.4) g
- ZTbiX;(DXaDXaXb)
a,b
=- Z ro TR Tl — 2> rTh, T, — > rulhTl,
a,b,k a,b,k a,b,k

where {X*} is the dual basis of {X;}.

2.2. Four-dimensional geometries

We review the classification of geometries in dimension 4. For the definition
of geometry see Wall [17], [18], Scott [12] and Thurston [14]. A geometry is a
pair (X, G) where;
1) X is a connected simply connected manifold,
2) G is a Lie group of diffeomorphisms of X acting transitively on X,
3) For each = € X, the stabilizer subgroup G, is compact,
4) G contains a discrete subgroup I' such that the quotient space X/T" contains
a finite invariant measure in the sense of Ragunathan [11].

Two geometries (X,G) and (X', G') are regarded as the same geometry if
there is a diffeomorphism of X onto X throwing the action of G isomorphically
onto G'. We say that a geometry (X,G) is contained in another geometry
(X',G") if there is a diffeomorphism of X onto X  throwing the action of G
into a subgroup of G

The four-dimensional geometries with maximal connected Lie groups in the
above contained relation were classified by Filipkiewicz as follows ([4], [18]).

Theorem 3. Any four-dimensional geometry (X, G) with a mazimal connected
group G is the same as (X ' G/) where G is the identity component of the isom-
etry group of X "and X' is one of the four-dimensional Riemannian symmetric

spaces or the following Lie groups with some left invariant metrics; SL(2) x E?,
Nil® x E', Sol®> x E', Nil*, the solvable Lie groups Soly, ,,, Sol§, Solf, F*
with isometry group R? x SL(2).

Here and below E™ is the n-dimensional Euclidean space, S™ is the n-

e

dimensional standard sphere, H™ is the n-dimensional hyperbolic space, SL(2)
is the universal covering space of the special linear group SL(2), SO(n) is the
special orthogonal group, SU(n) is the special unitary group, U(n) is the uni-
tary group, Nil? is the nilpotent Heisenberg group. The groups Sol} and Nil*
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are certain solvable and nilpotent groups respectively, whose Lie algebras have
a non-trivial center. Soly,, ., Solg and F* are explained in Section 3.

We also list the non-maximal geometries with connected isometry group in
dimension 4 as follows:

1. (B E*x K); K =U(2), SU(2), SO(3), SO(2) x SO(2), SO(2), (5" )m n,
{1}, which are contained in the Rimannian symmetric space (E*, E4 x SO(4)).
Any metric associated to one of these geometries is flat.

2. (5% x E?,50(3) x E?), (H% x E? PSL(2) x E?), which are contained
in the Rimannian symmetric spaces (S x E2,5? x E?2 x SO(2)) and (H? x
E? PSL(2) x E? x SO(2)) respectively. Here PSL(2) is the isometry group
of H?. Any metric associated to one of these geometries yields the respective
Riemannian symmetric space.

3. (8 x E',SU(2) x E'), ($® x E',U(2) x E'), which are contained in the
Riemannian symmetric space (S° x E',SO(4) x E'). Here S® is identical to
the Lie group SU(2).

4. (SL(2) x B, SL(2) x EY), (Nil® x E*, Nil® x EY), (Sold, H).

Note that on each of SL(2) x E', Nil> x E' and Solj there exists a left-
invariant metric with a five-dimensional isometry group which yields a maximal
geometry, and that Lie groups Sol® x E', Nil*, Sol;, ,,, Solf and F* have no
non-maximal geometries. Refer to [18] for details and notations.

The aim of this paper is the classification of R-critical or W-critical complete,
locally homogeneous four-manifolds which have finite volume. Let (M, g) be a
complete, locally homogeneous four-manifold, i.e., g is a complete Riemannian
metric on M such that given z,y € M, there are neighborhoods U and V of
z and y, respectively, and an isometry (U,z) — (V,y). Suppose that (M, g)
has a finite volume. Let M be the universal covering space of M and g be the
lifted metric of g. Then the pair (M, Isom®(§)) becomes a geometry where
Isom®(§) is the identity component of the isometry group of M. It is either a
maximal geometry or a non-maximal geometry. From Theorem 3 and the list
above, it is either a Riemannian symmetric space or a Lie group with a left
invariant metric.

3. W-critical locally homogeneous manifolds

As explained in the last paragraph of the previous section, (1\7 ,Isom® (§))
is either a Riemannian symmetric space or a Lie group with a left invariant
metric. Among the Riemannian symmetric spaces, E*, $4, H*, P?(C), H%(C),
S?x 8% 8?x H?, H?x H?, S x E' and H® x B! are W-critical while 52 x E?
and H? x E? are not. For the left invariant metrics on Lie groups, it remains
to classify left invariant W-critical metrics on Lie groups in Theorem 3 or in
the list of non-maximal geometries. Following Lamomtagne’s suggestion [8] we
first classify W-critical left invariant metrics on unimodular Lie groups whose
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Lie algebras have non-trivial center. A Lie group G is called unimodular if its
left invariant Harr measure is also right invariant. The associated Lie algebra
is called unimodular if the Lie group is unimodular. Note that the Lie groups
in Theorem 3 or in the list of non-maximal geometries are unimodular because
each of them admits a discrete subgroup with quotient of finite volume [10].

Proposition 1. Let (M, g) be a four-dimensional, unimodular, simply con-
nected Lie group whose Lie algebra has a non-trivial center and g be a left
invariant, W-critical metric. Then (M,g) is one of the following: R* with a

flat metric, I*,]E2/) x R with a flat metric and SU(2) x R with a product met-
ric of any constant curvature metric on SU(2) and a flat metric on R. Here

E(2) is R? x R, the universal cover of the two-dimensional Euclidean group
E(2) =R? x SO(2).

Proof. Let M be a 4-dimensional, unimodular Lie group having a non-trivial
center and ¢ a left invariant metric on M and A its Lie algebra. Take X4
to be a non-trivial element in the center of A. Let Z be the orthogonal
complement of X;. Then the quotient algebra 7 = A/ < X, > has the
induced inner product ¢ by restricting g to 7, after identifying 7 with Z
via the quot1ent; map. For each element Ve I the linear transformation
ad(V) T - I, ad(V)(W) = [V,W] for any W € Z, has trace zero. There-
fore Z is unimodular [10] and has an orthonormal basis X; = X1+ < X4 >
,XQ = Xo+ < Xy >,X3 = X3+ < X4 > such that X, X, X3 € 7 and
[X'l,f(g] = f3X3, [X'g,f(;;] = i X, [Xg,Xl] = 719 X», for some constants 1;’s.
Therefore A has an orthonormal basis X3, X3, X3, X4 with the following com-
mutator relations

(X, X4] =0
(3.1) (X1, Xa] = uz X3 + v3 Xy,
[X2, X3] = u1 X1 + v1 Xy,
[X3, X1] = ua X + v2X4.
So we have the structure constants:
(3.2) sz = _031 = us, 0112 =-C = U3,C§3 = —C3p =,
023 = ng = Ul’C§1 = '0123 = uz,C; = —0113 = Uz,

and C}“j = 0 otherwise. We denote the left hand side of equation (2.3) by

[} [o]
gradW = 2D* Dr+-2ror—2Rr—2Wr and let gradW(X;, X;) = W;;. Using (3.2)
we can calculate the Riemannian curvature tensor Rijn = R(X;, X;, Xi, Xi)

as fOHOWS:
_ 3,2 1 1,2 1,2 3,2 1 1
R1212 __ful3 —_ §¢u1uz + _ul + _u2 _— —'U3 + SUIUQ + _usul,

R =3 ,
(3.3) 1213 = 3 U302

_1
Ri21a = jugvs — Juqva + $v2uz,

__3
Ri223 = —3v1v3,
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Rigoa = —3ugvi + Jusvy — Juiug,

Risi2 = 3v30,,

Riziz = — 342 — Jugu + Fud + 303 — 203 + Juguo + Juius,
Rizis = Fugvs — Juqvs + tvgus,

Ri3zz = 3vy0s,

R334 = }1“/2”1 + U3ty — UIUL,

Ryigiq = %2 + -f“,

Rigpa = — 30102,

Riszs = —3v103,

Raszaz = —ﬁu% %uauz + ui+; U% 2+ Juzug + Juqug,
Raszs = Juivs — Susvs + tvgus,

Rossa = —Juivs + jusva — jvou,

Rosza = 303 + $vi,

Rog3q = —lvavm

R334 = v2 + ”17 and R;j. = 0 otherwise.

The Ricci curvature tensor r;; = r(X;, X;) = Zizl Riijr is computed as
follows:

1= —yu3 — du3 + jul - lvg + usug — 303,
rog = —3uf — tud + Juj — —v3 + ugug — 303,
(34) r33 = I—%QU% 'I %2%% ”il— %2’11% - —"02 + ugUy — é’l)%,
T44 = 3VU3 + 3U5 + 307,
1

—1 _1
T12 = 3V2V1, T3 = 5V1V3, T14 = 3V1U1,

723 = %031/2, T24 = %Uzum T34 = %Uau&
We can also calculate from (2.4), (3.2) and (3.4)

(D*Dr)i2 (D*Dr)(X1, X2)

%vgvf + %vg’vl + 2vov U Uy — 4v2v1u;;u v2v1u3u1

1 3 3
+2v3v201 + Svav1ud + Jvaviuf + Juviul.

The rest of (D*Dr);; can be computed similarly. Using these, (2.1), (3.3) and
(3.4) we first compute the non-diagonal entries, i.e., W;, 1 # 7, as follows:
(3.5)
Wiz= (D*Dr)ig + 20, miri2 — QZijzl Ry — 2 Eijzl Wii25Ti
= 2vov1(8v3 + 8ui + 8uj — dugus — u3 — 4urus + 803 + 8vf + Sugur),
Wis= tvzv1(8uf + 8u3 — u3 — dusus — duguy + Surus + 8v3 + 8v3 + 8uf),
Wis= tu1v1(8v3 — u3 — duius — u3 + 8v3 — duguy + 8vf + 8uj + 2uzus),
Was= Lvgvua(—4uius —~ 4upuy + 8v7 + 8v3 + 8uj + 8v3 + Sugus + 8uj — ui),
Woa= 3ugv2(8v3 — uf — dugug — duguy — uf + 803 + 8ul + 8v3 + 2uqus),
Wia= tvsus(8ud + 807 — u? — u3 — dupuz — duyug + 8v3 + 2uguy + 8v3).
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Note that there are symmetries among the indexes 1, 2 and 3 in (3.1) and
so in (3.5).

If we assume that none of the v;’s vanish, then taking the sum of the equa-
tions 242 = 0, 18 = 0 and W2 — 0, we obtain 13uf + 02 + Luf + 24007 +
vi+ v3) + (u1 — 3u2)? + (ug — 3u3)? + (w1 — $uz)? = 0, which holds only if all
the variables must vanish, a contradiction. Hence one of the v;’s must vanish.

From now on we may assume that vy = 0 without loss of generality, because
of the symmetry of vy, vz, and v3 in the commutator relations.

We consider two cases.

Case 1. up # 0 and uz # 0. We subdivide this case;

Case 1-i} v = 0 or v3 = 0: by symmetry we may suppose that vy = 0.

The diagonal entries, i.e., W;;, ¢ = j, are computed as follows:

(3.6)

Wi = ——21)§ (2’LL3U2 + 2ud — ud + Suguy — Fuguy — 4u3)v3 + 2u3u2
——u3u2u1 + uzul - 2u3 — 2u2 — §u2uyu1 + 1 ul + u3U2u1
+§u3u1 — 2u1u2 — 2u1u_3 + 2u3u2,

Way = —20§ + (%Ugﬂz - lu% + lu% -I— 2u3u 3u2u1 — 4u?)v? — 2uzud
—2ufuguy — 2u2u1 —2ui+ 1 u2 + 2uduguy — 2uf — Fugugud

+2udur + Zudug + 2uius + Suduy,

Wag = gvgl + (—3uguz + %u% + lu% — Zuguy — Suguy + 4uf)v] + Zuzud
+2ufusus + 2ufus + —u3 — 2u} — 2uduguy — 2u — Bugugud
—-2u3u1 + 2ufus + §u1u3 - 2u3u2,

10,4 1,2 1,2 N2 _ 2. 3
Wi = Fvg+ (—2usus — §u2 - §u1 - ZU3u1 + uguy + 4u3)v3 - §U3UQ
+uuzu1——uu1+ u+u+ uu3u1+ 2% 4 U3u2u
3 U2 3 2 2 1 1
2.3 2,3 2 5 3
Zujuy — Sufug — u?ue, 2udus.

We subdivide further:
Case 1-i-a) vz # 0.

To analyze (3.6) we note that each of (3.6) is quadratic polynomials with
respect to vZ in decreasing order. From the equation Ws4 = 0 in (3.5), we have

u% + u% — 8u§ — 2uqug + 4dusug + 4duqug

o2 = !
Substituting this to the diagonal entries in (3.6) we have
Wi = Z’U3U2u% — 3udugus + Jugud — Judug — Ruduy + 2uduy
u%ug 63 ul + 105u1’
Wy = —§u3u2u1 + —ugu;;ul — Suzud + Qudus + Suduy — Ludug
16u1u2+ 105 ‘21 ggul

From the equation 16 x (Wi + Waz) = 5(uy — u2)* + 16(u? — u3)? = 0 we
have u; = ug. Conversely if u; = ug, v1 = v2 = 0 and v§ = uijugz — ug then
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all the Wj;’s vanish from (3.5) and (3.6). Therefore we have the solutions
{u1 = ug #0,ug # 0,17 = v2 = 0,03 = ugus — u% # 0}. For these we calculate
the curvature tensors r1y = re2 = fujus, 733 = 3u3, raa = Fuiuz — 3ul,
T12 = T13 = T14 = T3 = T9oq = 0, r3qg = %\/ (U1U3 — ’LL%)Ug, 8§ = %Ulu;g and all
the Wijk’s vanish.

We will show that any metric g of these is isometric to a product metric on

SU(2) x R.

. 0 0 1 0 4
Letelz%(é _i>,62=%<_10>,63=%(ié)ande4:

(( g 8 ) ,1) be the standard basis for su(2) x R. Then for an orthonormal

basis of g we may set X1 = \/uiuzer, X2 = \/ujuses, X3 = ujez— \/(Ul‘U.B u3)e4
and X4 = ey so that they satlsfy (3.1). The following g-orthonormal change of
basis X1 = X1, Xo = Xp, X3= /2 X3+, /1 - 8 X, and X = —, /1 — 2 X5+

\/ o> X4 diagonalizes Ricci curvature tensors, i.e., ri1 = rap = r33 = “442,

44 = 0 and 719 = 13 = r14 = 793 = 194 = T334 = 0. Now the relations between
e;'s and X;'s are as follows: X; = Jujuzer, Xo = Juiuszes, X3 = Jujuzes and

Xy4=—-u 1/1——4’16 -I-(%_;Z—H—,/ )ea. Weputa—,/ulug,ﬁu—uh/l-%f

and y = W= oy Jus

Juiug up
Consider the map f : SU(2) x R — SU(2) x R defined by f(a,t) = (a
exp(Btes),vt) and for (a,t) € SU(2) x R the left translation L, : SU(2) x
R — SU(2) xR defined by L, +)(b,s) = (a-b,t+s). Then choosing the curve
A(s) = (exp(sae1),0) passing through the identity (I,0) of SU(2) x R with
4A|._o = ey and differentiating (foLau)(A(s)) = (aexp(saer) exp(ftes),vt)
at s = 0, we have

df (a,ty((dL(a ) (1,0)(€1))
= aae; exp(ftes)

— aaexp(Btes) exp(—ftes)er exp(Btes)
aexp(ftes)(cos ft - aey — sin Gt - aeg)

Il

because exp(—pQtes)e; exp(Btez) = cosBt - e; — sin Bt - ex. Similarly we have
df(a,0)((dLap))(1,0)(ae2)) = aexp(Btes)(sin St - ae; + cos Bt - aes).

Let go be the product metric on SU(2) x R with the orthonormal basis
fi = ae1, fo = wes, f3 = aes, and f; = e4 on its Lie algebra and let
Y, = cosft - aey —sinft - aex, Yo = sinft - aey + cos Gt - aex, Y3 = aej
and Yy = fesz + veq, which form an orthonormal basis for g. Then differ-
entiating the curve Ly, (exp(sY1),0) = (aexp(Btes) exp(sY1),vt) at s = 0,
we obtain (de(a,t))(I,O)(Yl) = aexp(ftes)Y:. So df(a,t)((dL(a,t))(I,O)(fl)) =
(de(a,t))(I,O) (Yl) Similarly for 1 = 2,3, 4, we have df(a,t)((dL(a,t))(I,O) (fl)) =
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(de(a,t))(I,O) (Y;) This means that

(F*9)((dLa,6))(r,0)(fi), (dLa,0) ) (1,0) (5))
= 9(df(a,ty((dL(a,t))(1,0) (i), a6y (AL (o)) 1,00 (F5)))
= 9((dL f(a,1)) (1,00 (Ys), (AL f(a,1)) (1,0)(¥5))
= (L}a,n9) (Y3, Y) = (3, Y5) = bi5,
i.e., an orthonormal basis {(dLa))(1,0)fi} for go in T(e 5(SU(2) x R) is also
an orthonormal basis for f*g in T(, 4 (SU(2) x R). So f*g = go and f is an

isometry. Therefore any of the solution metrics of {uy = ug # 0,u3 # 0,v; =
va = 0,v% = uyus — u? # 0} is isomeric to a product metric gg on SU(2) x R.

Case 1-i-b) v3 = 0.
In this case M is a Riemannian product G x R, where G is a simply con-
nected three-dimensional unimodular Lie group. By the classification of three-

——

dimensional unimodular Lie group [10], G must be one of SU(2), SL(2,R),
E(2), E(1,1), Nil® and E3. Among them, SU(2), SL(2,R), E(1,1), Nil® and
E?® have compact quotients. For these Lie groups with compact quotient one
may consider the W-criticality on a compact quotient G x S* of G x R. By the
following claim, the product metric on M = G x S' is W-critical if and only if
it is conformally flat.

claim. Any product metric of a metric on a compact manifold G with a flat
metric on a circle S is W-critical if and only if it is conformally flat.

Proof of claim. We denote a metric on G by g1 and a flat metric on St by
g2 and their product metric by ¢ = g1 + g2 on M = G x S*. Consider
a perturbation g* of g of the form ¢* = g1 + tgy. Since |W|2, = |WI3,
Ll W(g") = fH§W|§dv;t = [z, IW|2dvg, dv,,. Therefore g is W-critical
if and only if it is conformally-flat. O

It is well known that a product metric on G x R is conformally-flat if and
only if G has constant curvature.

P

In the case of E(2), one of u;’s must vanish, say uy [9, p. 307]. In this case,
i.e., v; = vo = v3 = u; = 0, the diagonal entries in (3.6) become as follows:

Wi = 2ufug + 2usud — 2ul — 2ud,
Wa = Zufus — 2ugud — 2uf + Pul,
Wiz = —2udus + Jugud + 2uj — 2us,
W = —3udus — Zugud + 2uf + 2ul.

The solutions to the equations Wi; = Woy = W3y = Wyy = 0 are ug = us.
Therefore when M = F(2) x R, we have solutions {v; = v; = v3 = 0,u; =
0,uz = uz}, up to permutations of uj, ug and us and M has a flat metric from
(3.3).
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Case 1-ii) va # 0 and vz # 0.

First we compute

(3.7)

Wy = —2vuquy — 3viud — 2U3U3u1 + Zudugus — 3viui — 203ugus
—lufvg + v3usur + Fudusuy + §u3u2u% — 2u30? + viuguy
~2ufu; + 4u3v3 - 2u3u2v3 + 4viu — %uluz + —v%v% ~ %u%ul
—%udu, — Jugud — Sufus + of + Bog + Fud + Juf + Fud.

Subtracting two equations g—f} = 0 and %vai = 0 in (3. 5) we have 9u? +
uous — buqus = 0. So u; = 2(uz + u3). Substituting u; = (uz +u3) to Wy
in (3.7) we have 24 x Wyy = —138ugus(vs +113) 3u(v2 +v3) 3u(v? + i)+
80(vZ + v$)? + 128uduy + 128uzu + 282udul + 19u3 + 19ug If we substitute

U = (ug +u3) to Waq = 0, we get v3+0v3 Ez—tﬁ%"iﬁ Substituting this to
24 x W44 = 0 we obtain the equation 9uj 4 60uus + 118udu? + 60usu3 + Jui =
(u2 + 3u3)%(3uz + uz)? = 0. The solution to this equation is uz = —3uy or
uy = —3uz. If us = —3uy then v + v = —4u? and if up = —3us then
v2 +v3 = —4u?, so that we get no solution in this case.

Case 2. up =0 or uz =0.
Case 2-i) uz = 0 and u3z = 0.
From (3.7) we have 6 x Waq = (uf — 3v3)? + (u} ~ 3v3)* +2uf+ Zod + Tlof +
40vZv2. Hence we have the trivial solution: uy = uy = ug =v; = vz = vz = 0.
When the solution is trivial, M is R* with flat metric.
Case 2-ii) ug = 0 and uz # 0.
We subdivide further:
Case 2-ii-a) vy # 0 and v3 # 0.
From Wa3 = 0 in (3.5) we have v3 = wi—Suitduius =8v;  \With this substitution
om Wag 2 ]
the diagonal entries are computed:

(3.8)

Wi = viuguy + Eugul — 2ulv} — lsgu?u;:, 2ud + 2uf + Fufug,

Wao = v§U3u1 + u3u1 — 3udvd + —u1U3 - %ué ggul Zudul,

Wiz = vdusus + Tudus + 3udod + Sufus+ Suf — ggu‘f Tuduj,

Wi = —3vfusus — Zudug + Judvd — dudus + Jud + Sud + il
From the equation Wy — W33 = u3u1 — 3udv? + u1U3 — 3uj + u1u3 =0
we have v3 = 4”3“1“%:3 Sugtuius - Qubstituting this to (3.8) we have Wiy =
~2udus + Zul, Woy = Wys = ’LL1U3 3gu‘{,W44 = 3udu; ~ Zut and so wy
must vanish. Then we have v3 = ~u? and hence there is no solution in this
case.

So vy or v3 must vanish.
Case 2-ii-b) v2 = 0 and vz = 0.

In this case we have treated already in Case 1-ii-b).
Case 2-ii-c) vo = 0 and vs # 0.
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2 2
From the equation Wy = 0 in (3.5) we have v2 = “tfuiue—8us = gupgi

8

tuting this to the diagonal entries in (3 6) we obtain Wiy = —2udug + 12w},
3 63 3,3 214

Wag = ulu;; — 32u1, Wiz = jujus — 32u1, Wy = ——ulu;g—i— 53U1- So u1 must

vanish and hence usz = vs = 0. Therefore we have no solution in this case.
Case 2-ii-d) vg # 0 and v3 = 0.
We can compute Wy, W33 and Wy as follows:

(3.9)
2
Wap = tv3uj + tvdu? — 2odugur + 2uduy + 2udus + 2uf — 2uf — 2ud,
- _1,2,2 4 1,2 1,2 3 2,3 44 10
Wz = —gvsul + jviu? — v2u3u1 2uju; + Fujus — 21)2 TUB 2u1,
= _1,2,2_ 1,2 2 3 2,3 4,2
Wi = —3v3u3 — sv3u + viugu; — gusul sujug + ——v2 + 2ud + ul

From the equation Was +3Wyy = 2( u3 —u? +2u3u; +8v2) = 0, we have

vi = w;—%—lﬂ Substituting this to (3.9) we have

Wag = ~35 (21U3 + 22uzuq + 21’!1,1)( up + ’U,3) ,

Wis = %(-—ul + U3)(63U€’ + 43’U,3’LL% + 45u§u1 + 1057,&%).
If uy = ug, then v3 = 0, a contradiction. Therefore the solutions to the
equations Wagy = 0, W33 = 0, Wyy = 0 satisfy u; = ug = 0. Therefore we have
no solution in this case.
Case 2-iii) uy # 0 and u3 = 0.

This case is symmetric to the Case 2-ii).

Summarizing Case 1 and Case 2, when the solution is trivial, M is R* with
zlflit metric; when v, = vo = v3 = 0, M is a product G x R where G = R3,
E(2) or SU(2) with a metric of constant curvature; when the solutions are
{ur = ua # 0,uz # 0,v1; = v2 = 0,02 = wyuz — us # 0}, (M, g) is isometric to
SU(2) x R with a product metric of a constant curvature metric on SU(2) and
flat metric on R. This finishes the proof of Proposition 1. O

In the list of maximal and non-maximal geometries in Section 2.2, every
metric of the geometry (E*, E4 x K) is flat and every metric of the geometries
(S? x E?,50(3) x E?), (H? x E?, PSL(2) x E?) is the respective Riemannian
symmetric space. The Lie groups S% x E', SL(2) x E!, Sol® x El, Nil%, Sol}
have non-trivial center. Hence it remains to consider only the three Lie groups

Sol?. . Sol$ and F*, whose Lie algebras have trivial center.
m,n 0

We first consider left invariant metrics on Soly, ,, and calculate its W-critical
equation. The Lie algebra of Sol;, ,, has a basis {e;} such that

(3.10) le1, e2] = zey, le, e3] = yes, le1,e4] = zeq,

and [e;, e;] = 0 otherwise ( [18]). Here, x > y > z are real numbers, z+y+z = 0,
and e*, e¥, e* are the roots of t® — mt? +nt — 1 = 0 with m and n distinct
positive integers. Let g be a left invariant metric on Sol#’n. We can choose an
orthonormal basis {X;,7 = 1,2, 3,4} on the tangent space at the identity such
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that, for some constants k;;’s,
- Xo = kages = €3,
X3 = kszéz + kases = kaa€a + €3,
Xy = ka2€2 + ka3€3 + kaseq = ka2€y + ka3€3 + &4,
X1 = kuier + ki2éz + k13€3 + k14é4.

Note that ey, &3, €3 and €4, defined above, still satisfy (3.10), so we may re-

place e;’s by €;’s. The orthonormal basis X;’s have the following commutator
relations:

(X1, Xo] = knz Xy,

(X1, X3] = kniksa(z — y) Xa + k11y X3,

[X1, X4] = ki1 (kaskaz(z — y) — ka2z + kaoz) X2 + k11kas(y — 2) X3 + k112 Xy,
the right hand side of which are homogeneous in ky;. Then each term of left
hand side of the W-critical equation (2.3) is homogeneous in k11 of degree 4.
So we may assume that k1; = 1. Scaling the basis X; — %L and so the metric,
we may assume that z = 1. Finally using the relation z = —z ~ y, we may
have an orthonormal basis X;’s with the commutator relations

(X1, Xo] = X,
(X1, X3] = bX2 + y X,
[Xl,X4] =cXo+uXs+ (—1 — y)X4,

for some constants b, ¢, u and y. With these one can calculate the curvature
tensors as follows:

1
Rio12 = sz + ;1-02 -1, Rz =-b+ icu,
Risia = —c— Lbu, Rigiz = —3b2 + 12 — 2
1214 = —C — 70U, 1313 = —3% U v,
3 3 2
Ryzia = —4bc —yu, Ripa=—3c%— Su? — (1+y)?,

Rosas = 362 —~y, Rasns = $be— Lu,

Roysss = 5yc— 3bu, Rogoa = 32+ 1+,

Rosss = eu+ 1b(1+y), Raasa = 2u? +y(l+y),
Rijki = 0 otherwise.

Ty =—1b% — u? 292 22y, 1= 102+ 1c2,
raz = —5b® + Jut,  ry = —3c2 - h?,
ria=ri3 =714 =0, raz=—3b+ Jcu+ by,
To4 = —C— 3yc, T34 = —3bc—yu— tu.
From (2.1),

Wigip = gb? + 52 — 1 + gu® + 257 + 2y,
Wisis = —3b? + u? 41+ 12 + g,
Wiarg = —3 — ju? + 367 — y, Wigz = —3b — Lby,

— 1 1 1 — 1 1 1
W1214 = —5C— Zb'Ll, -+ Y6, W1314 = —§bc — sYu -+ U
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By the formula (2.4), we have

(D*Dr)n = —8—16y —4c? — 4u? — 24y® — 4b% — b*c? — 1p*
—u?b? —u2c? — 4y2h% — A2 c? — Ayb® — dyc? — Ay
—sut — 8y* — 16y° — 4u?y? — 1t

Using these one can compute and rearrange Wy, as follows:

—2Wn1
—2{2(D"Dr)1s +2 Y5 rurin — 25055 Ruaagris — 2200500 Waagmis)
16 + 32y + 11b% + 48y? + 18cuby — b%u? + 4u* + 16y* + 32y3 + 4¢*
+116%y2 + 4b* + 8b%c? + 20uy + 20c%y + 20u2y? + 11c2y? + 2b%y
+8c?u? + 20¢? + 11u?

= 16(y* +y + 1)? + (11y% + 2y + 11)6% + (11y? + 20y + 20)c? + 3b*
+8c%u? + (b — %)2 + lfu‘l + 4c* + 8(bc + %uy)2
+(By? + 20y + 1)

> 0.

The Lie group Sol§ is the case of equal roots in Solfn’n, ie,z=y= —%z, and

hence the calculation of grad W for Sol§ is contained in that of Sol}, ..
Consequently, we have the following proposition.
Proposition 2. Any left invariant metric on Soly, ,, or Sol§ is not W-critical.

F* is the only geometry without compact quotient among the geometries in
Theorem 3. The geometry F* is described as the manifold R? x B with a left
invariant metric g whose isometry group is R2x SLy(R). Here B is the subgroup
of SL2(R) consisting of the upper triangular matrices with positive diagonal
entries. Note that there is no other geometry contained in F* than itself [18,
p.127]. So we only need to check the W-critical equations for the left invariant

metric g with isometry group R? x SLy(R). For each p = (u,v, <(z Z)) €
R? x SLy(R), the isometry 7, from R? x B onto itself is defined by

(8%
o (5 )
(ac+b)(ca+td)+ach? )
)

8
C 24c
=(u+ az + by,v + cx + dy, ((a+d)0+2ﬁ2 W

B

where (z,y, (’g ﬁ?1>) € R2x B, 8 > 0and a € R. The Lie algebra

of R? x B has basis vectors e; = (1,0, (g 8)), es = (0,1, (8 8)), €3 =
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1 0 01 . . .
(0,0, 0 —1 }, e4 = (0,0, 00 ) with the following commutator relations:
[ela 82] = Oa [83, 61] = €1, [639 62] = —é€y,
les, eq] = 2e4, [eq,€1] =0, les,e2] = €;.
Using the fact that the isotropy group at the identity e = (0,0, (1 0)) is

0 1
{(0,0, <—C2isn09 ZI;Z))I 0 < 6 < 27}, we will show that e;’s are orthogonal
cosf sinf

with respect to g. For fixed 6 := (0,0, (_ sinf  cosO

)), by the map (). we

have the following:

(rz)se(e1) = —ez,
(rz)ee(er) = "12‘61 - %62, (r=)ee(e2) = %el + \/Lieg,
(T%)*B(efﬁ = —€4, (T%)*e(e4) = €3.

Since rg is an isometry, putting above into g(e;, ;) = g(ro«(e:), ro«(e;)) for all
1,7, we deduce that ey, ez, e3, e4 are g-orthogonal each other with respect to
g. Therefore we can choose an orthonormal basis X;, X5, X3, X4 such that
X1 =kiey, Xo = koea, X3 = kaez, X4 = kqeq with the following commutator
relations:

[X17X2] = Oa [X13X3] = —k3X3’ [XI’XLI] = 07
k
[Xa, X3) = k3 Xy, [X2,X4) = —k—jkzxXl, (X3, X4] = 2k3X4.
Since 1 = g(X2, X2) = k2g(ea,e2) and 1 = g(X;,X1) = k?g(e1,e1), k3 = k2.
So we may choose an orthonormal basis X7, X2, X3, X4 such that
[Xl,Xz] = 0, [Xl,Xg,] = ~aX1, [Xl,X4] = 0,
[Xz,Xg} = OLXQ, [XZ,X4] = —le, [X3,X4] = 2aX4.
for some constants @ and, b. -In this basis the curvature tensors are com-
puted as follows: Risip = 7b® +a? Ris13 = —a?, Riq1a = 0% — 202, Rogo3 =
—a2, R2424 = “%bz + 2&2, R3434 = —4CL2, Rijkl =0 otherwise, and (D*D’I‘>44 =
—1b* — 8a%b? + 16a*. Finally we have
Wi = —16a” + 6a%b? — 2b*,
which cannot be zero. Thus we have the following proposition.

Proposition 3. Any left invariant metric on F* is not W-critical.

Proof of Theorem 1. For a complete, locally homogeneous space (M, g) the pair
(M, Isom® §) is a geometry. So (M, §) is a Riemannian symmetric space or a
Lie group with a left invariant metric in Theorem 3 or in the list of non-maximal
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geometries. Among the Riemannian symmetric spaces, Einstein symmetric
spaces and S? x H?, $3 x E' and H® x E! are W-critical. By Propositions 1,
2 and 3, any W-critical left invariant metric on the Lie groupiiri Theorem 3 or
in the list of non-maximal geometries is R* with flat metric, £(2) x R with flat
metric or SU(2) x R with a product metric of any constant curvature metric on

SU(2) and a flat metric on R. Among these E(2) x R doesn’t have a quotient
of finite volume [12, p.476]. The proof of Theorem 1 is finished. O

4. R-critical locally homogeneous manifolds

In this section we classify R-critical complete, locally homogeneous mani-
folds of finite volume. As mentioned in previous section they are locally iso-
metric to one of Riemannian symmetric spaces or Lie groups with left invariant
metrics. The R-critical Riemannian symmetric spaces are B4, $%, H*  P%(C),
H?(C), 82 x 5%, 8? x H?, H? x H?, while §? x E?, H* x E?, S3 x E', H3 x E!
are not R-critical. In [8], Lamontagne classified R-critical left invariant metrics
on unimodular Lie groups whose Lie algebras have non-trivial center.

Theorem 4. (Lamontagne [8]) Let (M, g) be a four-dimensional, unimodular,
simply connected Lie group whose Lie algebra has a non-trivial center and g be
a left invariant, R-critical metric. Then (M, g) is one of the following: R? or

e

E(2) x R with a flat metric.
We omit the proof of Theorem 4, which is similar to that of Proposition 1.

Following the same reasoning as the W-critical case of Section 3, we are left
to calculate only three Lie groups Solt, ,,, Solg and F*, whose Lie algebras
have trivial center.

As explained in Section 3, the Lie algebra of Soly, ,, has a basis X; with the
following commutator relations:
(X1, Xo] = Xo,
[X1, X3] = bX2 + yXs,
[X1, Xy4] = X2 +uX3+ (-1 —y) X4,
Calculating grad®R using this, we can arrange %Rll = %gradR(X 1,X1) as
follows:
%{4(D*D7‘)11 -+ 4 Z?:l T1i741 — 4}:?’]-:1 Rh’lj’r‘ij
4 4
=235 k=1 Rijk + % 2 kl=1 Rizjkl}
- 2,2 2 11,4 _ 11
= =24 —48y — 48y® — 24y* — 28u?y® — 16b%y% — Lut — et — 11cP?
—16y2c? — 166 — 116%c% — LLb* + u?b? — 24cuby — 16u® — 28c%y
—28uly — 4b%y — 72y — 28c2
= —(16y% + 4y +16)b* — Lrc* — (16y° + 28y + 16)c? — 11u?c? — Fu?
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—24(y2 +y+ 1)2 — 11(Cb —+ %uy)Q — '116—14(:(/2 + %y + %)u2
—5{(0® = fyu?)® + $5ut}

< 0

4

Proposition 4. Any left invariant metric on Soly, ,, or Sol} is not R-critical.

For F4, with respect to the basis chosen in Section 3 we have
33 bt

8 b

which is negative because both a and b are nonzero.

Raq = —42a* + 9a%b% —

Proposition 5. Any left invariant metric on F* is not R-critical.

Proof of Theorem 2. As explained in the proof of Theorem 1, we need only to
consider Riemannian symmetric spaces or left invariant metrics on Lie groups in
Theorem 3 or in the list of non-maximal geometries. The R-critical Riemannian
symmetric spaces are Einstein symmetric spaces and S? x H2. By Theorem 4,
Propositions 4 and 5, any R-critical left invariant metric on tEgEie groups in

Theorem 3 or in the list of non-maximal geometries is R* or E(2) x R with a

——

flat metric. As F(2) x R with a flat metric does not admit a quotient of finite
volume, we get the conclusion of Theorem 2. O

Remark 1. More generally, one may try to classify R-critical homogeneous
metrics. For this we need to compute on solvable Lie groups in the list of [16].
One can reduce the number of undetermined constants to 4 or 5. But since the
R-critical equations are too complicated, it is not easy to solve the system of
equations. For instance, one can reduce the number of undetermined constants
to 5 for g4 g(c), but it is quite hard to analyze its R-critical solutions.

Remark 2. In [13], Smedt and Salamon classified anti-self-dual (hence W-
critical) left invariant metrics on solvable Lie groups and found an example
which is not a Riemannian symmetric space. But this example does not have
a quotient of finite volume.
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