DOI QR코드

DOI QR Code

COMPLETE NONCOMPACT SUBMANIFOLDS OF MANIFOLDS WITH NEGATIVE CURVATURE

  • Ya Gao (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University) ;
  • Yanling Gao (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University) ;
  • Jing Mao (Faculty of Mathematics and Statistics Key Laboratory of Applied Mathematics of Hubei Province Hubei University) ;
  • Zhiqi Xie (School of Mathematics and Statistics Yulin University)
  • Received : 2023.05.31
  • Accepted : 2023.08.16
  • Published : 2024.01.01

Abstract

In this paper, for an m-dimensional (m ≥ 5) complete non-compact submanifold M immersed in an n-dimensional (n ≥ 6) simply connected Riemannian manifold N with negative sectional curvature, under suitable constraints on the squared norm of the second fundamental form of M, the norm of its weighted mean curvature vector |Hf| and the weighted real-valued function f, we can obtain: • several one-end theorems for M; • two Liouville theorems for harmonic maps from M to complete Riemannian manifolds with nonpositive sectional curvature.

Keywords

Acknowledgement

This work is partially supported by the NSF of China (Grant Nos. 11801496, 11926352 and 12261095), the Fok Ying-Tung Education Foundation (China) and Hubei Key Laboratory of Applied Mathematics (Hubei University).

References

  1. M. T. Anderson, L2 harmonic forms on complete Riemannian manifolds, in Geometry and analysis on manifolds (Katata/Kyoto, 1987), 1-19, Lecture Notes in Math., 1339, Springer, Berlin, 1988. https://doi.org/10.1007/BFb0083043
  2. G. P. Bessa and J. F. Montenegro, Eigenvalue estimates for submanifolds with locally bounded mean curvature, Ann. Global Anal. Geom. 24 (2003), no. 3, 279-290. https://doi.org/10.1023/A:1024750713006
  3. H.-D. Cao and H. Li, A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differential Equations 46 (2013), no. 3-4, 879-889. https://doi.org/10.1007/s00526-012-0508-1
  4. H.-D. Cao, Y. Shen, and S.-H. Zhu, The structure of stable minimal hypersurfaces in ℝn+1, Math. Res. Lett. 4 (1997), no. 5, 637-644. https://doi.org/10.4310/MRL.1997.v4.n5.a2
  5. M. P. do Carmo, Q. Wang, and C. Y. Xia, Complete submanifolds with bounded mean curvature in a Hadamard manifold, J. Geom. Phys. 60 (2010), no. 1, 142-154. https://doi.org/10.1016/j.geomphys.2009.09.001
  6. G. Carron, L2 harmonic forms on non-compact Riemannian manifolds, in Surveys in analysis and operator theory (Canberra, 2001), 49-59, Proc. Centre Math. Appl. Austral. Nat. Univ., 40, Austral. Nat. Univ., Canberra, 2002.
  7. I. Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press, Inc., Orlando, FL, 1984.
  8. S. Y. Cheng, Eigenfunctions and eigenvalues of Laplacian, in Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973), 185-193, Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Amer. Math. Soc., Providence, RI, 1975.
  9. S. Y. Cheng, Liouville theorem for harmonic maps, in Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), 147-151, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980.
  10. Q.-M. Cheng and S. Ogata, 2-dimensional complete self-shrinkers in ℝ3, Math. Z. 284 (2016), no. 1-2, 537-542. https://doi.org/10.1007/s00209-016-1665-2
  11. Q.-M. Cheng and Y.-J. Peng, Complete self-shrinkers of the mean curvature flow, Calc. Var. Partial Differential Equations 52 (2015), no. 3-4, 497-506. https://doi.org/10.1007/s00526-014-0720-2
  12. L.-F. Cheung and P. F. Leung, Eigenvalue estimates for submanifolds with bounded mean curvature in the hyperbolic space, Math. Z. 236 (2001), no. 3, 525-530. https://doi.org/10.1007/PL00004840
  13. T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. 2, 755-833. https://doi.org/10.4007/annals.2012.175.2.7
  14. A. Dessai, Obstructions to positive curvature and symmetry, Adv. Math. 210 (2007), no. 2, 560-577. https://doi.org/10.1016/j.aim.2006.07.003
  15. Q. Ding and Y. L. Xin, The rigidity theorems of self-shrinkers, Trans. Amer. Math. Soc. 366 (2014), no. 10, 5067-5085. https://doi.org/10.1090/S0002-9947-2014-05901-1
  16. J. Dodziuk, L2 -harmonic forms on complete manifolds, in Seminars on differential geometry, edited by S. T. Yau, Ann. Math. Stud. 102, 1982.
  17. F. Du and J. Mao, Estimates for the first eigenvalue of the drifting Laplace and the p-Laplace operators on submanifolds with bounded mean curvature in the hyperbolic space, J. Math. Anal. Appl. 456 (2017), no. 2, 787-795. https://doi.org/10.1016/j.jmaa.2017.07.044
  18. J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385-524. https://doi.org/10.1112/blms/20.5.385
  19. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
  20. F. Fang and S. X. Mendon,ca, Complex immersions in Kahler manifolds of positive holomorphic k-Ricci curvature, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3725-3738. https://doi.org/10.1090/S0002-9947-05-03675-5
  21. F. Fang, S. X. Mendon,ca, and X. Rong, A connectedness principle in the geometry of positive curvature, Comm. Anal. Geom. 13 (2005), no. 4, 671-695. https://doi.org/10.4310/CAG.2005.v13.n4.a2
  22. P. Freitas, J. Mao, and I. Salavessa, Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 701-724. https://doi.org/10.1007/s00526-013-0692-7
  23. K. R. Frensel, Stable complete surfaces with constant mean curvature, Bol. Soc. Brasil. Mat. (N.S.) 27 (1996), no. 2, 129-144. https://doi.org/10.1007/BF01259356
  24. M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178-215. https://doi.org/10.1007/s000390300004
  25. S. Hildebrandt, J. Jost, and K.-O. Widman, Harmonic mappings and minimal submanifolds, Invent. Math. 62 (1980/81), no. 2, 269-298. https://doi.org/10.1007/BF01389161
  26. D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974), 715-727. https://doi.org/10.1002/cpa.3160270601
  27. Z. Jin, Liouville theorems for harmonic maps, Invent. Math. 108 (1992), no. 1, 1-10. https://doi.org/10.1007/BF02100594
  28. K. Kenmotsu and C. Xia, Hadamard-Frankel type theorems for manifolds with partially positive curvature, Pacific J. Math. 176 (1996), no. 1, 129-139. http://projecteuclid.org/euclid.pjm/1102352054 102352054
  29. P. Li, Curvature and function theory on Riemannian manifolds, In: Survey in Differential Geometry, in Honor of Atiyah, Bott, Hirzebruch and Singer, Vol. VII, pp. 71-111, International Press, Cambridge, 2000.
  30. P. Li, Harmonic functions and applications to complete manifolds, XIV Escola de Geometria Diferencial., Instituto de Matem'atica Pura e Aplicada (IMPA), Rio de Janeiro, 2006.
  31. P. Li and J. Wang, Minimal hypersurfaces with finite index, Math. Res. Lett. 9 (2002), no. 1, 95-103. https://doi.org/10.4310/MRL.2002.v9.n1.a7
  32. H. Li and Y. Wei, f-minimal surface and manifold with positive m-Bakry-Emery Ricci curvature, J. Geom. Anal. 25 (2015), no. 1, 421-435. https://doi.org/10.1007/s12220-013-9434-5
  33. W. Lu, J. Mao, C. Wu, and L. Zeng, Eigenvalue estimates for the drifting Laplacian and the p-Laplacian on submanifolds of warped products, Appl. Anal. 100 (2021), no. 11, 2275-2300. https://doi.org/10.1080/00036811.2019.1679793
  34. J. Mao, R. Tu, and K. Zeng, Eigenvalue estimates for submanifolds in Hadamard manifolds and product manifolds N × R, Hiroshima Math. J. 50 (2020), no. 1, 17-42. https://doi.org/10.32917/hmj/1583550013
  35. H. P. McKean Jr., An upper bound to the spectrum of Δ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359-366. http://projecteuclid.org/euclid.jdg/1214429509 https://doi.org/10.4310/jdg/1214429509
  36. J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of ℝn, Comm. Pure Appl. Math. 26 (1973), 361-379. https://doi.org/10.1002/cpa.3160260305
  37. R. Miyaoka, L,2 harmonic 1-forms on a complete stable minimal hypersurface, in Geometry and global analysis (Sendai, 1993), 289-293, Tohoku Univ., Sendai, 1993.
  38. B. Palmer, Stability of minimal hypersurfaces, Comment. Math. Helv. 66 (1991), no. 2, 185-188. https://doi.org/10.1007/BF02566644
  39. S. Pigola, A. G. Setti, and M. Rigoli, Vanishing and finiteness results in geometric analysis, Progress in Mathematics, 266, Birkhauser Verlag, Basel, 2008. https://doi.org/10.1007/978-3-7643-8642-9
  40. R. Schoen and S.-T. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Comment. Math. Helv. 51 (1976), no. 3, 333-341. https://doi.org/10.1007/BF02568161
  41. R. Schoen and S.-T. Yau, Lectures on differential geometry, translated from the Chinese by Ding and S. Y. Cheng, with a preface translated from the Chinese by Kaising Tso, Conference Proceedings and Lecture Notes in Geometry and Topology, I, Int. Press, Cambridge, MA, 1994.
  42. Y. Shen, A Liouville theorem for harmonic maps, Amer. J. Math. 117 (1995), no. 3, 773-785. https://doi.org/10.2307/2375088
  43. Q. Wang and C. Xia, Complete submanifolds of manifolds of negative curvature, Ann. Global Anal. Geom. 39 (2011), no. 1, 83-97. https://doi.org/10.1007/s10455-010-9224-2
  44. G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. https://doi.org/10.4310/jdg/1261495336
  45. Y. Zhao, C. Wu, J. Mao, and F. Du, Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates, Rev. Mat. Complut. 33 (2020), no. 2, 389-414. https://doi.org/10.1007/s13163-019-00322-1