• 제목/요약/키워드: compaction test

검색결과 637건 처리시간 0.028초

수축보상을 위한 자기충전 콘크리트의 현장적용 (A Field Application of the Self-Compaction Concrete for Shrinkage Compensation)

  • 이상수;원철;박상준;김동석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.7-12
    • /
    • 2002
  • The purpose of this study is to design and to apply the self-compaction concrete mixture to field, having not only high strength but also compensation for shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when Cement is replaced with 35% limestone Powder, 6% CSA expansive additives at unit water 175kg/$m^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished in the field application.

  • PDF

분무 건조된 세라믹 과립의 강도 측정방법에 대한연구 (Study on Test Method for Strength of Ceramic Spray Dried Powder)

  • 엄우식;이희수;이세훈;김덕희;이인식
    • 한국세라믹학회지
    • /
    • 제33권6호
    • /
    • pp.660-664
    • /
    • 1996
  • We have studied the test method for strength of spray dried ceramic powder using manual press and UTM. which is one of the important to influence forming process. We could observe the compaction behavior using manual press. However the measurement of granule strength was only possible with UTM capable of providing the condition of a constant pressing rate. The strength of granule can be measured from the slope change of compaction curve and agrees with the value which is obtained from the combination of saturated tap density and compaction curve. So we proposed the accurate method to measure the strength of granule from the results of this study.

  • PDF

조립토 Piled Raft의 상호작용계수에 관한 연구 (A Study on Interaction Factor of Granular Compaction Piled Raft)

  • 신방웅;채현식;김홍택;강인규;박사원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.269-276
    • /
    • 2000
  • Granular compaction piled raft systems have been effectively used in soft ground foundation to improve not only settlement but also bearing capacity. In the present study, to examine the behavior characteristics and bulging failure zone on granular compaction piled raft system, carbon rod tests have been performed. The test results are compared with the zone of bulging failure and the effects of pile-pile interaction obtained from the analytical approaches. In addition, parametric studies are peformed with considering pile slenderness ratio, Poisson's ratio and load sharing ratio.

  • PDF

장기침하를 고려한 고성토 암버력 동다짐 지반의 설계사례 (A Case Study Of Dynamic Compacted Rock Embankment Design Considering Long Term Behavior)

  • 배경태;안상익;박용만;김강규;김형석;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.967-975
    • /
    • 2009
  • In order to control differential settlement and to secure the safety of super structure on a high rock embankment the designed static compaction is changed with dynamic compaction and piled raft method. The parameters for dynamic compaction design are obtained from a pilot test. In addition, numerical analyses are also carried out to figure out the length and quantity of piled raft that can restraint the differential settlement within allowance range.

  • PDF

LNG Tank용 자기충전 콘크리트의 배합설계에 관한 연구 (A Study on the Mix Design of the Self-Compaction Concrete for the LNG Tank)

  • 김동석;박상준;원철;이상수
    • 한국건축시공학회지
    • /
    • 제3권4호
    • /
    • pp.135-138
    • /
    • 2003
  • The purpose of this study was to design the self-compaction concrete mixture, having not only high strength but also compensation of shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test, hydration heat analysis were performed. As a results, when 35% of limestone Powder, 6% CSA expansive additives are replaced at unit water 175kg/$\textrm{m}^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished.

LNG Tank용 자기충전 콘크리트의 배합설계에 관한 연구 (A Study on the Mix Design of the Self-Compaction Concrete for the LNG Tank)

  • 김동석;박상준;원철;이상수
    • 한국건축시공학회지
    • /
    • 제4권1호
    • /
    • pp.85-88
    • /
    • 2004
  • The purpose of this study was to design the self-compaction concrete mixture, having not only high strength but also compensation of shrinkage without thermal crack under 4 sides outer restraint of the member. In the experimental mix, replacement ratio of limestone Powder, CSA expansive additives, and unit water were selected as parameters, using portland blast-furnace slag cement. And, bleeding test, expansibility test. hydration heat analysis were performed. As a results, when 35% of limestone Powder, 6% CSA expansive additives are replaced at unit water 175kg/$\textrm{m}^3$, demanded performances of fresh and hardened self-compaction concrete are accomplished.

Field experimental study for layered compactness of subgrade based on dimensional analysis

  • Han, Dandan;Zhou, Zhijun;Lei, Jiangtao;Lin, Minguo;Zhan, Haochen
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.583-598
    • /
    • 2022
  • The Compaction effect is important for evaluating the subgrade construction. However, there is little research exploring the compaction quality of deep soil using hydraulic compaction. According to reinforcement effect analysis, dimensional analysis is adopted in this work to analyze subgrade compactness within the effective reinforcement depth, and a prediction model is obtained. A hydraulic compactor is then employed to carry out an in-situ reinforcement test on gravel soil subgrade, and the subgrade parameters before and after reinforcement are analyzed. Results show that a reinforcement difference exists inside the subgrade, and the effective reinforcement depth is defined as increasing compactness to 90% in the depth direction. Layered compactness within the effective reinforcement depth is expressed by parameters including the drop distance of the rammer, peak acceleration, tamping times, subgrade settlement, and properties of rammer and filler. Finally, a field test is conducted to verify the results.

Compaction Grouting System에 의한 철도역사건물 파일기초보강효과 (A Reinforcement Effect of Pile Foundation by Compaction Grouting System in Railroad Station Building)

  • 천병식;최승권;도종남;성화돈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1364-1368
    • /
    • 2006
  • By the countermeasure which is caused by with railroad station ground settlement it applied a CGS in each independent foundation. The effectiveness of the ground improvement and the bearing capacity of the compaction pile has been verified by the Cone Penetration Test(CPT) and Load Test. Test result show that penetration resistance and the cone friction force increased a lot and settlement 13.475mm as the standard settlement 40.0mm appeared at below. Also uniaxial compression test result $278kg/cm^2$ as the standard $150kg/cm^2$ appeared far a lot.

  • PDF

쇄석다짐말뚝 복합지반의 응력분담에 관한 현장실험 연구 (Field Test Study on Stress Concentration Ratio of Composited soft ground with Crushed-stone Compaction Pile)

  • 김태훈;이민희;최용규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.717-724
    • /
    • 2003
  • Although sand compaction pile is applied considerably for increase of hearing capacity in domestic, it is getting more necessary to develope the alternative materials because of exhaustion and increase of unit cost of sand. In this study, stress concentration ratio between crushed-stone pile and soft ground was measured and, a displacement ratio 30, 40 and 50%, variation of stress concentration ratio was analyzed. As an increase displacement ratio, the stress concentration effect of crushed-stone compaction pile doesn't increase proportionally and effect of ground improvement in case of ground was good at displacement ratio 30% or 40%. The stress concentration ratio of crushed-stone compaction pile in group piles is 1.5 times that of crushed-stone compaction pile in single pile.

  • PDF