• Title/Summary/Keyword: compact groups

Search Result 145, Processing Time 0.026 seconds

CHARACTERIZATION OF REINHARDT DOMAINS BY THEIR AUTOMORPHISM GROUPS

  • Isaen, Alexander-V.;Krantz, Steven-G.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.297-308
    • /
    • 2000
  • We survey results, obtained in the past three years, on characterizing bounded (and Kobayashi-hyperbolic) Reinhardt domains by their automorphism groups. Specifically, we consider the following two situations: (i) the group is non-compact, and (ii) the dimension of the group is sufficiently large. In addition, we prove two theorems on characterizing general hyperbolic complex manifolds by the dimensions of their automorphism groups.

  • PDF

ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS

  • Mohammad, Ramezanpour
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.557-570
    • /
    • 2015
  • Let $\mathbb{G}$ be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that $\hat{\mathbb{G}}$, the dual of $\mathbb{G}$, is co-amenable if and only if there is a state $m{\in}L^{\infty}(\hat{\mathbb{G}})^*$ which is invariant under a left module action of $L^1(\mathbb{G})$ on $L^{\infty}(\hat{\mathbb{G}})^*$. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.

HILBERT'S THEOREM 90 FOR NON-COMPACT GROUPS

  • Rovinsky, Marat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1757-1771
    • /
    • 2017
  • Let K be a field and G be a group of its automorphisms. It follows from Speiser's generalization of Hilbert's Theorem 90, [10] that any K-semilinear representation of the group G is isomorphic to a direct sum of copies of K, if G is finite. In this note three examples of pairs (K, G) are presented such that certain irreducible K-semilinear representations of G admit a simple description: (i) with precompact G, (ii) K is a field of rational functions and G permutes the variables, (iii) K is a universal domain over field of characteristic zero and G its automorphism group. The example (iii) is new and it generalizes the principal result of [7].

SOME CONSEQUENCES OF THE EQUATION [xn, y] = 1 ON THE STRUCTURE OF A COMPACT GROUP

  • Erfanian, Ahmad;Rezaei, Rashid;Tolue, Behnaz
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.161-171
    • /
    • 2013
  • Given an integer $n{\geq}1$ and a compact group G, we find some restrictions for the probability that two randomly picked elements $x^n$ and $y$ of G commute. In the case $n=1$ this notion was investigated by W. H. Gustafson in 1973 and its influence on the structure of the group has been studied in the researches of several authors in last years.

φ-FRAMES AND φ-RIESZ BASES ON LOCALLY COMPACT ABELIAN GROUPS

  • Gol, Rajab Ali Kamyabi;Tousi, Reihaneh Raisi
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.899-912
    • /
    • 2011
  • We introduce ${\varphi}$-frames in $L^2$(G), as a generalization of a-frames defined in [8], where G is a locally compact Abelian group and ${\varphi}$ is a topological automorphism on G. We give a characterization of ${\varphi}$-frames with regard to usual frames in $L^2$(G) and show that ${\varphi}$-frames share several useful properties with frames. We define the associated ${\varphi}$-analysis and ${\varphi}$-preframe operators, with which we obtain criteria for a sequence to be a ${\varphi}$-frame or a ${\varphi}$-Bessel sequence. We also define ${\varphi}$-Riesz bases in $L^2$(G) and establish equivalent conditions for a sequence in $L^2$(G) to be a ${\varphi}$-Riesz basis.

A COMPARATIVE STUDY ON THE MECHANICAL PROPERTIES OF CONDENSABLE COMPOSITE RESINS (응축형 복합레진의 기계적 성질에 관한 비교연구)

  • 정지아;문주훈;조영곤
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.6
    • /
    • pp.485-491
    • /
    • 2001
  • The purpose of this study was to compare the mechanical properties of three condensable composite resins and one hybrid composite resin. The compressive strength, diametral tensile strength, Vicker's microhardness were tested for mechanical properties of condensable composite resins (SureFil, Ariston pHc, Synergy compact), and hybrid composite resin (Z 100). The tested materials were divided into four groups: control group Z 100 (3M Co. USA), experimental group I Ariston pHc, (Vivadent, Co., Liechtenstein) experimental group II SureFil (Dentsply, Co., U.S.A.), experimental group III Synergy Compact (Coltene, Co., Swiss). According to the above classification, we made samples of SureFil, Ariston pHc, Synergy Compact, Z 100 with separable cylindrical metal mold. And then, we measured and compared the value of compressive strength, diametral tensile strength and Vicker's microhardness of each sample. (omitted)

  • PDF

EQUIARIANT K-GROUPS OF SPHERES WITH INVOLUTIONS

  • Cho, Jin-Hwan;Mikiya Masuda
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.645-655
    • /
    • 2000
  • We calculate the R(G)-algebra structure on the reduced equivariant K-groups of two-dimensional spheres on which a compact Lie group G acts as a reflection. In particular, the reduced equivariant K-groups are trivial if G is abelian, which shows that the previous Y. Yang's calculation in [8] is incorrect.

  • PDF

K-THEORY OF CROSSED PRODUCTS OF C*-ALGEBRAS

  • SUDO TAKAHIRO
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • We study continuous fields and K-groups of crossed products of C*-algebras. It is shown under a reasonable assumption that there exist continuous fields of C* -algebras between crossed products of C* -algebras by amenable locally compact groups and tensor products of C* -algebras with their group C* -algebras, and their K-groups are the same under the additional assumptions.

  • PDF