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SOME CONSEQUENCES OF THE EQUATION [xn
, y] = 1 ON

THE STRUCTURE OF A COMPACT GROUP

Ahmad Erfanian, Rashid Rezaei, and Behnaz Tolue

Abstract. Given an integer n ≥ 1 and a compact group G, we find
some restrictions for the probability that two randomly picked elements
xn and y of G commute. In the case n = 1 this notion was investigated by
W. H. Gustafson in 1973 and its influence on the structure of the group
has been studied in the researches of several authors in last years.

1. Generalizations of the commutativity degree

P. Erdős and P. Turán introduced in [6] the ratio

(1.1) d(G) =
|{(x, y) ∈ G×G : [x, y] = 1}|

|G|2
,

known as the probability that two randomly chosen elements of a finite group G
commute. It is called the commutativity degree of G (see for instance [5, 7, 8,
10, 16]). Several authors have successively investigated whether restrictions on
(1.1) originate restrictions on the group structure. The answer is positive and
there are many results of classification in the quoted papers in the finite case
but few in the infinite case. The short note of W. H. Gustafson [11] shows that
it is meaningful to consider the infinite case, when we move in the category
of compact groups. However the situation becomes different, since we need
of tools which are not common in Group Theory but in Abstract Harmonic
Analysis and Topology. There are several works deal with word equations over
compact groups which show the influence that a word equation may have on the
structure of a group (see [1, 17, 18, 23]). Moreover, [2, 15] are recent advances
on the topic, where character theory involved.

From this moment, we will always assume (up to explicit alert) to deal with
compact groups satisfying the Hausdorff separability axiom, since this is usual
in the context of topological groups.

Received January 25, 2012; Revised March 30, 2012.
2010 Mathematics Subject Classification. Primary 20C05, 20P05; Secondary 43A05.
Key words and phrases. n-th power central elements, commutativity degree, compact

groups.

c©2013 The Korean Mathematical Society

161



162 A. ERFANIAN, R. REZAEI, AND B. TOLUE

The Haar measure ν on a compact group G is a well–known notion and can
be found in [11, Section 2] or [13, Chapters 1 and 2]. Then we may follow
the idea of W. H. Gustafson, considering C2 = {(x, y) ∈ G ×G : [x, y] = 1}
and noting that C2 = f−1({1}), where f is the continuous function (x, y) ∈
G×G 7→ f(x, y) = [x, y] ∈ G. This allows us to define

(1.2) d(G) = (ν × ν)(C2).

Clearly, if G is finite, then G is a compact group with the discrete topology and

so the Haar measure on G is the counting measure. Therefore d(G) = |C2|
|G|2 ,

which gives exactly (1.1). Further details on (1.2) can be found in [7, 8, 11].
Actually we may ask if two compact groups having the same d(G) can be

classified. Recent contributions can be found in [3, 5, 7, 8, 16] and here we will
adapt some methods and techniques, where this is possible.

Given an integer n ≥ 1, we define

(1.3) Pn(G) = (ν × ν)(SG),

where

(1.4) SG = {(x, y) ∈ G×G : [xn, y] = 1}.

The function ϕ : (x, y) ∈ G × G 7→ ϕ(x, y) = [xn, y] ∈ G is continuous and so
SG = ϕ−1({1}) is closed and thus a Borél set which is (ν × ν)–measurable (see
[19]). It turns out that (1.3) expresses the probability that a randomly chosen

pair of element (x, y) ∈ G × G has the property that xn commute with y. In
particular, P1(G) = d(G) and this allows us to generalize the results which are
already known for (1.1).

2. Structural restrictions and Bell groups

This section is devoted to prove some basic properties of Pn(G). Successively
we will give lower and upper bounds for Pn(G) when G is a certain compact
group. We will generalized the known result of P. Lescot in [16]. Actually we
show Pn(G) = Pn(H) for two isoclinic groups G and H .

The probability Pn(G) helps us to look at some results in [4] from a new
point of view. Recall from [4] the following notion.

Definition 2.1. An element x of an abstract group G is called n–Bell, if
[xn, y] = [x, yn] for all y ∈ G. G is called n–Bell if all its elements are n–Bell.

Note that Definition 2.1 can be given for an arbitrary group G without
assumptions on its topology. Immediately we can compare (1.1), (1.3) and
Definition 2.1 thanks to the following result.

Corollary 2.2. For a compact group G of exponent n the following conditions

are equivalent:

(i) G is n–Bell;
(ii) Pn(G) = 1.
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Proof. We claim that (i) implies (ii). [4, Lemma 2] shows that an n–Bell group
B has the subgroup Bn = 〈bn | b ∈ B〉 which is contained in CB(a) for all
a ∈ B. In particular, this is true for G and so Gn ⊆ CG(y) for each y ∈ G.
Hence

Gn ⊆
⋂

y∈G

CG(y) = Z(G)

and all the elements of the form xn for x ∈ G are central. We conclude that
Pn(G) = 1.

Conversely assume that (ii) is true. Pn(G) = 1 implies [xn, y] = [x, yn] = 1
for all x, y ∈ G, then G is n–Bell. �

Remark 2.3. Corollary 2.2 gives information of how G is far from being n–Bell.
In particular, (1.3) allows us to have numerical information on this fact.

In the category Comp of all compact groups with corresponding morphisms
we may consider (1.3) as the following map

Pn : G ∈ Comp 7−→ Pn(G) ∈ [0, 1].

Some classic measure theoretical properties follow. For instance, Pn is multi-
plicative, that is, its value in a direct product is equal to the product of its
values in each direct factor, and monotone with respect to suitable subgroups
and quotients. These two properties were already noted for n = 1 in [11, (i),
p. 1033] and in [5, 7, 8, 10, 16]. We will be more general in the successive two
statements.

Proposition 2.4. Let m ≥ 1 and G1, G2, . . . , Gm be compact groups. Then

Pn(G1 ×G2 × · · · ×Gm) = Pn(G1) · Pn(G2) · · ·Pn(Gm).

Proof. It is a well known property of splitting of the probability of distinct
events. �

Proposition 2.5. Let G be a compact group and H a closed subgroup of G.
Then

µ
G
(H)2Pn(H) ≤ Pn(G),

where µ
G

is the corresponding Haar measure of G. Furthermore, if G is an

n–Bell group, then

Pn(G) ≤ Pn(H).

Proof. Assume that µ
H

is the Haar measure on H induced by µ
G
. It is clear

that µ
G
(H)2Pn(H) ≤ Pn(G), in the case that the index |G : H | = ∞. Now,

we may assume that |G : H | is finite. Then G is an open subgroup of G and
by [7, Lemma 2.1] we have

Pn(H) = (µ
H
× µ

H
)(SH)

=

∫

H

µ
H
(CH(xn))dµ

H
(x)
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≤ |G : H |2
∫

G

µ
G
(CG(x

n))dµ
G
(x)

= |G : H |2Pn(G).

Now, let G be an n–Bell group. By [7, Lemma 3.2] and Lebesgue-Fubini’s
Theorem we have,

Pn(H) =

∫

H

µ
H
(CH(hn))dµ

H
(h)

≥

∫

H

µ
G
(CG(h

n))dµ
H
(h)

=

∫

G

µ
H
(CH(gn))dµ

G
(g)

≥

∫

G

µ
G
(CG(g

n))dµ
G
(g) = Pn(G).

�

For a locally compact group G, we denote the space of complex-valued func-
tion on G integrable with respect to the Haar measure by L1(G). Assume that
H is a closed normal subgroup of locally compact group G and f ∈ L1(G). If
λ, µ and ν are Haar measures on H , G and G/H respectively, then

∫

G
H

(
∫

H

f(xh)dλ(x)

)

dν(xH) =

∫

G

f(x)dµ(x).

This is the so-called extended Weil formula, whose proof can be found in [19,
Theorem 4.5].

Proposition 2.6. If H is a closed normal subgroup of a compact group G,
then

Pn(G) ≤ Pn(G/H).

Proof. Assume that λ, µ and ν are corresponding Haar measures on H , G and
G/H respectively. Consider FC-center of G, i.e.,

FC(G) = {x ∈ G | |G : CG(x
n)| is finite}

(see [22, Vol. I, Chapter 4]). Thus we have

Pn(G) = (µ× µ)(SG)

=

∫

G

µ(CG(x
n))dµ(x)

=

∫

FC(G)

µ(CG(x
n))dµ(x)

=

∫

FC(G)

µ(CG(x
n)H)

|CG(xn)H : CG(xn)|
dµ(x)

=

∫

FC(G)

µ(CG(x
n)H)λ(CH(xn))dµ(x)
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≤

∫

G

µ(CG(x
n)H)λ(CH(xn))dµ(x)

=

∫

G
H

(
∫

H

µ(CG((xh)
n)H)λ(CH ((xh)n))dλ(h)

)

dν(xH).

By [7, Lemma 3.5] and µ(CG((xh)
n)H)=ν(CG((xh)

n)H/H)≤ν(CG/H(xnH)),
we have

Pn(G) ≤

∫

G
H

(
∫

H

ν(CG
H
(xnH))λ(CH ((xh)n))dλ(h)

)

dν(xH)

=

∫

G
H

ν(CG
H
(xnH))

(
∫

H

λ(CH((xh)n))dλ(h)

)

dν(xH).

≤

∫

G
H

ν(CG
H
(xnH))dν(xH) = Pn(

G

H
).

�

In order to prove the main results of this section we need of the following
lemmas.

Lemma 2.7. Let G be a compact group with the normalized Haar measure ν,
closed subgroup H and m ≥ 1. If |G : H | ≥ m, then ν(H) ≤ 1

m . If |G : H | ≤ m,

then ν(H) ≥ 1
m . In particular, |G : H | = m if and only if ν(H) = 1

m .

Proof. This is an easy fact whose proof can be found in [7, Lemma 3.1]. �

The following lemma presents the lower and upper bounds for Pn(G) when
G is a non-abelian compact group with certain properties. These are the same
bounds as we found in [9, Lemma 3.1] when G is finite.

Lemma 2.8. Let G be a non-abelian compact group, p be a prime and G/Z(G)
be a p–elementary abelian group of rank s ≥ 1. Then Pn(G) = 1, if p divides

n. Otherwise,
ps + ps−1 − 1

p2s−1
≤ Pn(G) ≤

ps + p− 1

ps+1
.

Proof. Of course Z(G) is a closed subgroup of G so that G/Z(G) is a compact
group. Since G/Z(G) = {Z(G), a1Z(G), . . . , aps−1Z(G)} is a p–elementary
abelian group, (xZ(G))p = Z(G) and therefore xp ∈ Z(G) for each x /∈ Z(G).
Z2(G)/Z(G) = Z

(

G/Z(G)
)

= G/Z(G) and so G is nilpotent of class 2. First,
suppose that p divides n. There exists an integer t ≥ 1 such that n = pt, then
for every (x, y) ∈ G×G we have

[xn, y] = [xpt, y] = [xp, y](x
p)t−1

[(xp)t−1, y] = · · · = [xp, y] = 1.

Hence Pn(G) = 1. Now assume p does not divide n. Then we may write
n = pt + r for some 0 < r < p. Obviously xn /∈ Z(G), whenever x /∈ Z(G),
because otherwise xnZ(G) = xpt+rZ(G) = xrZ(G) = Z(G) and this is a
contradiction. On the other hand, we have

ps = |G : Z(G)| = |G : CG(x
n)||CG(x

n) : Z(G)| ≥ |G : CG(x
n)|p.
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From this and Lemma 2.7 we have ν(Z(G)) = 1
ps and 1

ps−1 ≤ ν(CG(x
n)). Note

that CG(x
n) is a closed subgroup of G. Separately

(ν × ν)(SG) =

∫

G

ν({y ∈ G : [y, xn] = 1})dν(x) =

∫

G

ν(CG(x
n))dν(x).

Then we have

Pn(G) = (ν × ν)(SG)

=

∫

G

ν(CG(x
n))dν(x)

=

∫

Z(G)

ν(CG(x
n))dν(x) +

∫

G−Z(G)

ν(CG(x
n))dν(x)

= ν(Z(G)) +

∫

G−Z(G)

ν(CG(x
n))dν(x)

≥ ν(Z(G)) +
1

ps−1
(1 − ν(Z(G)))

=
1

ps
+

1

ps−1
−

1

ps−1
ν(Z(G))

=
ps + ps−1 − 1

p2s−1
.

The first inequality follows.
We note from Lemma 2.7 that

ν(CG(x
n)) ≤

1

p
for all x 6∈ Z(G).

Then

Pn(G) =

∫

Z(G)

ν(CG(x
n))dν(x) +

ps−1
∑

i=1

(

∫

aiZ(G)

ν(CG(x
n))dν(x)

)

= ν(Z(G)) +

ps−1
∑

i=1

(

∫

aiZ(G)

ν(CG(x
n))dν(x)

)

≤ ν(Z(G)) +
1

p

ps−1
∑

i=1

ν(aiZ(G))

=
1

ps
+

1

p
(ps − 1)

1

ps

=
ps + p− 1

ps+1
.

So the result follows. �

Remark 2.9. If s = 2 in Lemma 2.8 and p does not divide n, then the lower

and upper bound coincides. This means that Pn(G) =
p2+p−1
p3 . Furthermore,
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if p = 2, i.e., G/Z(G) ≃ Z2 × Z2, then

Pn(G) =
{

5/8, if n odd
1, if n even.

As already noted, we may have further concrete example, considering direct
products of the form D = G × T, in which T is the group of unit circle.
Proposition 2.4 implies Pn(D) = Pn(G) · Pn(T) = Pn(G).

Example 2.10. Consider the finite metacyclic group

G = 〈a, b|a9 = b3, bab−1 = a4〉.

We can check that G/Z(G) ≃ Z3 × Z3 and Pn(G) = 11/27 for all n not
divisible by 3. It is also easy to check that P5(G) = P10(G) = 11/27 and
P6(G) = P9(G) = 1. Note that GAP allows us to calculations of this kind.
Thanks to Proposition 2.4, an infinite example can be easily done by considering
D = G× T and we get Pn(D) = Pn(G).

Now we recall the notion of isoclinism between two groups, which was in-
troduced by P. Hall in [12].

Definition 2.11. For two groups G and H ; a pair (ϕ, ψ) is called an isoclinism

from G to H if
(i) ϕ is an isomorphism from G/Z(G) to H/Z(H);
(ii) ψ is an isomorphism from G′ to H ′;
(iii) the following diagram is commutative:

G

Z(G)
×

G

Z(G)

ϕ×ϕ
→

H

Z(H)
×

H

Z(H)
↓ ↓

G′ ψ
→ H ′

where, a
G
(g1Z(G), g2Z(G)) = [g1, g2] and aH

(h1Z(H), h2Z(H)) = [h1, h2].

In Lemma 2.8 the lower bound is achieved if ν(CG(x
n)) = 1

ps−1 for all

x 6∈ Z(G). The upper bound is achieved if G is isoclinic to an extra special
p–group of order ps+1.

In the following theorem we are going to generalize a corresponding situation,
known for commutativity degree (see [7, Theorem 3.8] and [20, 21]).

Theorem 2.12. Let G and H be two isoclinic compact groups. Then Pn(G) =
Pn(H).

Proof. Let (ϕ, ψ) be an isoclinism from G to H and µ
X
, λ

X
and ν

X
are Haar

measures on X, Z(X) and X/Z(X) respectively, where X ∈ {G,H}. Since
Z(G) is a closed subgroup of compact group G, then extended Weil formula
implies

Pn(G) = (µ
G
× µ

G
)(SG)
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=

∫

G

∫

G

χ
SG

(xn, y)dµ
G
(x)dµ

G
(y)

=

∫

G

(

∫

G
Z(G)

∫

Z(G)

χ
SG

((xz)n, y)dλ
G
(z)dν

G
(x̄)

)

dµ
G
(y)

=

∫

G

(

∫

G
Z(G)

∫

Z(G)

χ
SG

(xnzn, y)dλ
G
(z)dν

G
(x̄)

)

dµ
G
(y)

=

∫

G

(

∫

G
Z(G)

∫

Z(G)

χ
SG

(xn, y)dλ
G
(z)dν

G
(x̄)

)

dµ
G
(y)

=

∫

G

(

∫

G
Z(G)

χ
SG

(xn, y)

∫

Z(G)

dλ
G
(z)dν

G
(x̄)

)

dµ
G
(y)

=

∫

G

∫

G
Z(G)

χ
SG

(xn, y)dν
G
(x̄)dµ

G
(y).

By Lebesgue-Fubini’s Theorem we have

Pn(G) =

∫

G
Z(G)

∫

G

χ
SG

(xn, y)dµ
G
(y)dν

G
(x̄)

=

∫

G
Z(G)

(

∫

G
Z(G)

∫

Z(G)

χ
SG

(xn, yz)dλ
G
(z)dν

G
(ȳ)

)

dν
G
(x̄)

=

∫

G
Z(G)

∫

G
Z(G)

χ
SG

(xn, y)dν
G
(x̄)dν

G
(ȳ)

=

∫

G
Z(G)

∫

G
Z(G)

χ
SG

(a
G
(x̄n, ȳ))dν

G
(x̄)dν

G
(ȳ)

=

∫

G
Z(G)

∫

G
Z(G)

χ
SG

(ψ(a
G
(x̄n, ȳ)))dν

G
(x̄)dν

G
(ȳ)

=

∫

G
Z(G)

∫

G
Z(G)

χ
SG

(a
H
(ϕ(x̄n), ϕ(ȳ)))dν

G
(x̄)dν

G
(ȳ).

Since ϕ is an isomorphism of compact groups, [7, Corollary 2.5] allows us to
write

Pn(G) =

∫

H
Z(H)

∫

H
Z(H)

χ
SH

(a
H
(ān, b̄))dν

H
(ā)dν

H
(b̄)

=

∫

H
Z(H)

∫

H
Z(H)

χ
SH

(an, b)dν
H
(ā)dν

H
(b̄)

=

∫

H

∫

H

χ
SH

(an, b)dµ
H
(a)dµ

H
(b)

= (µ
H
× µ

H
)(SH) = Pn(H)
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and the proof of the theorem is completed. �

Theorem 2.13. Let G be a non-abelian compact group and G/Z(G) be a p-
group, where p is a prime. Then G is isoclinic to an extra special p-group of

order p3, if and only if Pn(G) = (p2 + p− 1)/p3, whenever p does not divide n.

Proof. Assume that G is isoclinic to an extra special p-group of order p3. Then
G/Z(G) is a p–elementary abelian group of rank 2 and the result follows by
Theorem 2.12 and Remark 2.9.

Conversely assume that Pn(G) = (p2 + p− 1)/p3. If x is a non-central
element, then ν(CG(x

n)) ≤ 1/p by Lemma 2.7. We may use an argument as
in the proof of Lemma 2.8. In fact we have

p2 + p− 1

p3
= Pn(G) =

∫

Z(G)

ν(CG(x
n))dν(x) +

∫

G−Z(G)

ν(CG(x
n))dν(x)

≤
(p− 1)

p
ν(Z(G)) +

1

p
,

and so
1

p2
≤ ν(Z(G)).

Again by Lemma 2.7 we conclude |G : Z(G)| ≤ p2. If |G : Z(G)| ∈ {1, p}, then
G is abelian, which is a contradiction. Hence |G : Z(G)| = p2 and so G/Z(G)
is an elementary abelian group of rank 2. Assume that G/Z(G) = 〈x〉 × 〈y〉
where x, y ∈ G and H is an extra-special p-group of order p3. Then H/Z(H) ∼=
Zp × Zp = 〈a〉 × 〈b〉 where a, b ∈ H and H ′ = Z(H) ∼= Zp.

Define ϕ : G/Z(G) → H/Z(H) by the rule ϕ(x) = a and ϕ(y) = b, which
is an isomorphism. It is known that if |G : Z(G)| = pn, then G′ is a p-

group and |G′| ≤ p
n(n−1)

2 (see [24]). By this fact, we have |G′| = Zp. One
can check that G′ = 〈[x, y]〉 and H ′ = 〈[a, b]〉, therefore ψ : G′ → H ′ by
the rule ψ([x, y]) = [a, b] is an isomorphism. It is now enough to check the
commutativity of diagram of Definition 2.11. Let xtys, xuyv ∈ G/Z(G). Then

a
H
ϕ2(xtys, xuyv) = a

H
(atb

s
, aub

v
) = [atbs, aubv] = [a, b]tv−su

= ψ([x, y]tv−su) = ψ([xtys, xuyv]) = ψa
G
(xtys, xuyv).

Therefore G and H are isoclinic by Definition 2.11 and the proof of the theorem
is completed. �

Here are some examples which confirm the above results and one example
which shows the limits of (1.3) in the compact case.

Example 2.14. Consider the finite group

G = 〈a, b, c : a3 = b3 = c3 = 1, bac = ab, ca = ac, cb = bc〉.

One can easily see that |G| = 27, |G′| = |Z(G)| = 3 and G/Z(G) is a 3–
elementary abelian of rank 2. G is an extra special 3–group of order 27. Now,
by using GAP, we can compute Pn(G) for some values of n. For instance, if
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n = 1, 2, 4, 5, 7, 8, 10, then Pn(G) = 11/27 and for n = 3, 6, 9 we have Pn(G) = 1
which is an evidence for Theorem 2.13. For the infinite case, we may consider
B = G× A, where A is the direct product of finitely many copies of T. From
Proposition 2.4, Pn(B) = Pn(G).

Example 2.15. Let L be a nontrivial compact Lie group and let Z act auto-
morphically on P = LZ by the shift. Set G = P ⋊ Z. Then N = P × {1} is a
compact normal subgroup, and G/N is discrete, and thus a Lie group. G is not
compact but it is locally compact. If P is abelian, then G is metabelian. If L
is abelian, then G is pro–solvable. See [13, 14] for details. G is an example of
a group which is locally compact, center–free and pro-solvable but it is neither
compact nor pro-Lie nor totally disconnected. On the other hand, G has a
unique maximal compact subgroup C(G) = P and we can consider Pn(P ) but
not Pn(G). This fact shows that our techniques can be further extended to
wider contexts.

Acknowledgement. The authors would like to thank the referee for some
helpful comments and suggestions.
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