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SEMIALGEBRAIC ORBIT STRUCTURES

Dae Heui Park

Abstract. Let G be a semialgebraic group not necessarily com-
pact. In this paper, we prove that the orbit space of every proper
semialgebraic G-set has a semialgebraic structure.

1. Introduction

For semialgebraic transformation groups we consider semialgebraic
groups G acting semialgebraically on semialgebraic sets M , i. e., the ac-
tion map θ : G×M → M is semialgebraic. Note that a semialgebraic set
is a subset of some Rn defined by finite number of polynomial equations
and inequalities, and a semialgebraic map between semialgebraic sets is
a map whose graph is a semialgebraic set. See Section 2 for some basic
material for semialgebraic category.

Working in semialgebraic category requires a lot of nontrivial efforts
to establish some of the properties which are easy or well-known in
topological or smooth category. One of such properties is the existence
of semialgebraic structure on the orbit space of a semialgebraic G-set.
Namely, it is not quite obvious whether the orbit space M/G of a semi-
algebraic G-set M has a semialgebraic set structure such that the orbit
map is semialgebraic. This is settled in the following theorem which is
a restatement of Theorem 3.5.

Theorem. Let G be a semialgebraic group and M a proper semi-
algebraic G-set. Then M/G has a unique semialgebraic structure such
that the orbit map M → M/G is a semialgebraic quotient map.

This theorem is proved by Brumfiel when G is compact in [2] and by
Scheiderer when M is locally compact in [10].
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2. Semialgebraic actions

2.1. Semialgebraic maps

The class of semialgebraic sets in Rn is the smallest collection of
subsets containing all subsets of the form {x ∈ Rn | p(x) > 0} for a
real valued polynomial p(x) = p(x1, . . . , xn), which is stable under finite
union, finite intersection and complement. A map f : X → Y between
semialgebraic sets X (⊂ Rm) and Y (⊂ Rn) is called a semialgebraic
map if its graph is a semialgebraic set in Rm × Rn. From now on we
impose “Euclidian topology” on semialgebraic sets and mainly consider
continuous semialgebraic maps. We summarize some results about semi-
algebraic sets and maps in the following proposition. For more details,
see [1], [3], [7] and [8].

Proposition 2.1. (1) Every semialgebraic set has a finite num-
ber of connected components, which are also semialgebraic.

(2) Composition of two semialgebraic maps is semialgebraic.
(3) Let f : X → Y be a semialgebraic map. If A ⊂ X is semi-

algebraic, then its image f(A) is semialgebraic. If B ⊂ Y is
semialgebraic, then its inverse image f−1(B) is semialgebraic.

(4) If A ⊂ X is semialgebraic, then the closure A and the interior
◦
A

in X are all semialgebraic.
(5) Let f : X → Q and g : X → Y be semialgebraic. Assume f is

surjective. If h : Q → Y is a map such that h ◦ f = g, then h is
semialgebraic.

(6) If A ⊂ Rn is a nonempty semialgebraic set, then the map x 7→
dist(x,A) from Rn to R is semialgebraic.

A continuous semialgebraic map f : X → Y is called semialgebraically
proper if f−1(C) is compact for every compact semialgebraic subset C
of Y . Since C should be semialgebraic in the definition, this notion is
weaker than the condition that f is semialgebraic and proper. Similarly
we say a semialgebraic map f : X → Y is semialgebraically closed if f
maps every closed semialgebraic subset of X to a closed semialgebraic
subset of Y .

As a sequence or net plays prominent roles in the study of topological
spaces, we can handle the semialgebraic properness more efficiently by
use of a curve germ which was contrived by Brumfiel, see [1] or [2].
A curve germ in a semialgebraic set X is represented by a continuous
semialgebraic map α : (0, ϵ] → X for some ϵ > 0. Two curve germs are
considered same if they agree on a common subinterval (0, δ] for some
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δ > 0. If a curve germ α extends to a continuous map α : [0, ϵ] → X, we
say α is completable, and we write α → x where x = α(0).

Proposition 2.2 ([2, p.73]). Let X, Y , X1 and X2 be semialgebraic
sets.

(1) (Completeness) Every curve germ in a compact semialgebraic set
has a completion.

(2) (Curve selection) If x belongs to the closure of a semialgebraic
subset K of X, then there is a curve germ α in K with α → x.

(3) (Lifting) If f : X → Y is surjective, then every curve germ α in
Y lifts to a curve germ α̃ in X, that is fα̃ = α.

(4) (Irreducibility) If X = X1 ∪ X2, then any curve germ in X is a
curve germ in either X1 or X2.

Proposition 2.3 ([2, p.73]). Let f : X → Y be a semialgebraic map
between semialgebraic sets.

(1) f is continuous if and only if for any completable curve germ α
by x in X the curve germ f ◦α is also completable by f(x) in Y .

(2) Suppose f is continuous. Then f is semialgebraically proper if
and only if the following condition holds: given a curve germ α̃ in
X such that fα̃ = α is completable in Y , then α̃ is completable
in X.

(3) If f is semialgebraically proper, then it is semialgebraically closed.

2.2. Semialgebraic actions

The definition of a semialgebraic group is given obviously, i.e., a semi-
algebraic set G ⊂ Rn is called a semialgebraic group if it is a topological
group such that the group multiplication and the inversion are semi-
algebraic. A semialgebraic homomorphism between two semialgebraic
groups is a semialgebraic map that is a group homomorphism. If H is
a subgroup and semialgebraic subset, then H is called a semialgebraic
subgroup.

By a semialgebraic transformation group we mean a triple (G,M, θ),
where G is a semialgebraic group, M is a semialgebraic set, and θ : G×
M → M is a continuous semialgebraic map such that

(1) θ(g, θ(h, x)) = θ(gh, x) for all g, h ∈ G and x ∈ M
(2) θ(e, x) = x for all x ∈ M , where e is the identity of G.

In this case M is called a semialgebraic G-set, and θ is called the action
map. As usual we shortly write gx for θ(g, x). A semialgebraic G-subset
of a semialgebraicG-setM is aG-invariant semialgebraic subset ofM . A
continuous semialgebraic map f : M → N between semialgebraic G-sets
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is called a semialgebraic G-map if it is G-equivariant, i.e., f(gx) = gf(x)
for all g ∈ G and x ∈ M .

Recall that a semialgebraic map f : X → Y is semialgebraically
proper if the inverse image of every semialgebraic compact subset is
compact. Now we define semialgebraically proper actions as follows.
Let G be a semialgebraic group not necessarily compact. A semialge-
braic action of G on M is proper if the augmented action map

ϑ∗ : G×M → M ×M, (g,m) 7→ (gm,m)

is semialgebraically proper. In this case M is called a proper semialge-
braic G-set. In terms of semialgebraic curve germs, this can be rewritten
as follows by Proposition 2.3.

Proposition 2.4. Let G be a semialgebraic group and M a semial-
gebraic G-set. Then the semialgebraic action is proper if and only if for
every curve germs γ in G and α in M if α and γα is completable then
γ is completable.

For topological proper actions the following proposition appears in
[4, p. 174] whose proofs are straightforward.

Proposition 2.5. Let G be a semialgebraic group and M a semial-
gebraic G-set.

(1) If G is compact, the action is semialgebraically proper.
(2) If G is not compact but M is compact, the action is not semial-

gebraically proper.
(3) If the semialgebraic action is proper, its restriction to any semi-

algebraic subgroup H ⊂ G is a proper semialgebraic H-action on
M , and its restriction to any invariant semialgebraic subset U of
M is a proper semialgebraic G-action on U .

(4) If the semialgebraic action is proper, the evaluation map

evm : G → M, g 7→ gm,

is semialgebraically proper, for each m ∈ M .
(5) A semialgebraic G-action on M is proper if and only if for every

two compact semialgebraic subsets K1 and K2 of M , the subset

{g ∈ G | K1 ∩ gK2 ̸= ∅}

of G is compact.

We want to compare with this notion of proper semialgebraic action
with that of Palais. Let M be a semialgebraic G-set. For two subsets
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U, V ⊂ M , define ((U, V )) by

((U, V )) = {g ∈ G | U ∩ gV ̸= ∅}.

We say a point x ∈ M is proper if x has a (semialgebraic) neighborhood
U of x in M satisfying that for any y ∈ M there exists a (semialgebraic)
neighborhood V of y in M such that the closure of ((U, V )) is compact.

Proposition 2.6. A semialgebraic G-set M is proper if and only if
every point of M is proper.

Proof. Suppose M is a proper semialgebraic G-set. For any x ∈ M it
is clear from the definition of proper action that the isotropy subgroup
Gx is compact. Since G is locally compact, by Proposition 2.5 (3), there
exists an open (semialgebraic) neighborhoodW of Gx in G whose closure
is compact. By Proposition 2.3 (3) the augmented action map ϑ∗ is a
closed map. Hence the image ϑ∗((G−W )×M) is closed inM×M . Since
(x, x) /∈ ϑ∗((G−W )×M), there exist semialgebraic open neighborhoods
U and U1 of x such that

U × U1 ∩ ϑ∗((G−W )×M) = ∅.

It follows that ((U,U1)) ⊂ W . Indeed, if g ∈ ((U,U1)), then there exists
y ∈ U1 such that gy ∈ U . Therefore ϑ∗(g, y) = (gy, y) ∈ U × U1. But
since U × U1 ∩ ϑ∗((G − W ) × M) = ∅, we see that g /∈ G − W , hence
g ∈ W . This shows that ((U,U1)) ⊂ W . By taking smaller U , assume
U ⊂ U1.

We now claim that for each y ∈ M there is a semialgebraic neighbor-
hood V of y in M such that ((U, V )) has compact closure. For y ∈ M
with G(y)∩U = ∅, take V = M −G(U). Then ((U, V )) = ∅. For y ∈ M
with G(y)∩U ̸= ∅, then gy ∈ U ⊂ U1 for some g ∈ G. Take V = g−1U1.
Then we have ((U, V )) = ((U,U1))g ⊂ Wg. Since W has the compact
closure, so does ((U, V )).

Conversely, suppose every point of M is proper. Let K1 and K2

be two compact semialgebraic subset of M . Since every point of M is
proper we can find finite semialgebraic open covers {U1, . . . , Un} of K1

and {V1, . . . , Vm} of K2 such that ((Ui, Vj)) has the compact closure for
every i and j. Since ((K1,K2)) ⊂

⋃
i,j((Ui, Vj)) the set ((K1,K2)) has

the compact closure. Hence Proposition 2.5 (5) implies that M is a
proper semialgebraic G-set.

Note that in [6] Palais defined a proper G-space M to be a G-space
that is proper at every point.
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3. Semialgebraic orbit spaces

In this section we shall show that the orbit space of every proper
semialgebraic G-set has a unique semialgebraic structure in the natural
sense. In fact, we shall show that the semialgebraic structure of the orbit
space of a proper semialgebraic G-set M can be defined by the quotient
of some smaller subset Y of M .

Definition 3.1. Let M be a semialgebraic set and E ⊂ M × M
an equivalence relation of M . Assume E is a closed and semialgebraic
subset in M × M . Let p1, p2 : E ⊂ M × M → M be the restrictions
of the natural projections M × M → M to each factors. We call a
subset Y of M a section-like subset of M for a closed semialgebraic
equivalence relation E ⊂ M ×M , if the map p1|p−1

2 (Y ) : p
−1
2 (Y ) → M is

semialgebraically proper and surjective.

Proposition 3.2 ([2, 10]). Suppose E ⊂ M ×M is a closed, semi-
algebraic equivalence relation. If M has a section-like subset Y , then
there exists a unique semialgebraic structure on M/E such that the
quotient map M → M/E is semialgebraic. Moreover the restriction of
the quotient map Y → Y/EY is semialgebraically proper and Y/EY is
semialgebraically homeomorphic to M/E where EY = E ∩ (Y × Y ).

Proof. The results are basically from [2] and [10]. Brumfiel first
showed the result when M itself is a section-like subset of M , i.e., when
p1 : E → M is semialgebraically proper and surjective.

Scheiderer proved the general case. More precisely, he proved that
if M is locally compact, then the existence of a section-like subset is
a necessary and sufficient condition for M/E to have the desired semi-
algebraic structure in [10, Theorem 4.1]. He also pointed out that the
sufficiency holds without the assumption of locally compactness, which
is the claim of the proposition.

The uniqueness of the semialgebraic structure is obtained as follows:
Any two semialgebraic structures on M/E have the same topology, and
hence they are homeomorphic. Then Proposition 2.1 (5) implies that it
is a semialgebraic homeomorphism. In [2] and [10] both authors con-
structed a semialgebraic structure on Y/EY as a model semialgebraic
structure of M/E, hence Y/EY is semialgebraically homeomorphic to
M/E. We now apply Theorem 1.4 of [2] to Y and EY to see that
the map Y → Y/EY is semialgebraically proper. This completes the
proof.

From Proposition 3.2 we have the following corollary.
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Corollary 3.3. Let M and N be semialgebraic sets. And let A be a
closed semialgebraic subset of M . Let f : A → N be a semialgebraically
proper map. Then M ∪f N has a unique semialgebraic set structure.

For a semialgebraic G-set M , let E = EG ⊂ M × M be a semial-
gebraic equivalence relation corresponding to the action, that is, EG =
{(gx, x) ∈ M × M | g ∈ G, x ∈ M}. Then EG is the image of the
augmented action map ϑ∗ : G×M → M ×M which is semialgebraically
proper, hence semialgebraically closed. Thus EG is closed in M × M .
The following lemma gives a criterion for a semialgebraic subset Y of M
to be section-like.

Lemma 3.4. Let M be a semialgebraic G-set and Y a semialgebraic
subset of M . Let pi : EG ⊂ M ×M → M (i = 1, 2) be the projections
to each factors. Let f = p1|p−1

2 (Y ) : p
−1
2 (Y ) → M .

(1) f is surjective if and only if any curve germ α in M can be written
as α = γβ for some curve germs γ in G and β in Y .

(2) f is semialgebraically proper if and only if any curve germ β in
Y such that γβ is completable in M for some curve germ γ in G
is completable in Y .

Proof. The sufficiency of (1) is clear if we take α as constant curve
germs. For necessity, apply Proposition 2.2 (3) to find β in Y such
that α × β is in EG. By applying Proposition 2.2 (3) to G × M →
EG, (g,m) 7→ (gm,m), we can find γ in G such that α = γβ.

(2) follows from Proposition 2.3 (2) since f(γβ, β) = γβ.

Theorem 3.5. Let G be a semialgebraic group and M a proper semi-
algebraic G-set. Then there exists a semialgebraic section-like subset
Y for EG, thus M/G has a unique semialgebraic structure such that
M → M/G is a semialgebraic quotient map.

Proof. By the definition of a semialgebraic set, M is a semialgebraic
subset of Rn for some n. First we construct a new imbedding ofM which
sends some “bad” points to infinity. We slightly extend the notation
((U, V )). For U ⊂ Rn and V ⊂ M let us define the subset ((U, V )) of G
as

((U, V )) = {g ∈ G | U ∩ gV ̸= ∅},
thus ((U, V )) means the set of those translators of V which meet with
U . Let M denote the closure of M in Rn. We say that x ∈ M has the
“good” property if there is a neighborhood U of x in M such that for any
y ∈ M there exists a neighborhood V of y in M such that ((U, V )) ⊂ G
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has the compact closure. It is clear that the set of all points in M
having the good property is open in M and contains M . Let A denote
the complement of this set in M , we call it the set of bad points.

Consider a map M → Rn+1 defined by x 7→ (x, 1/dist(x,A)). By this
semialgebraic map we can assume M is in Rn+1 and that every point in
M ⊂ Rn+1 has the good property.

Let m = n+1. First we show that every orbit G(x) of x ∈ M is closed
in Rm. Let α be a completable curve germ such that α(0, 1] ⊂ G(x) and
α(0) ∈ Rm. By applying Proposition 2.2 (3) to the surjective map
G× {x} → G(x), we can set α(t) = g(t)x for 0 < t ≤ ϵ for some ϵ > 0,
where g(t) is a curve germ in G. Let U be a semialgebraic neighborhood
of α(0) and let V be a semialgebraic neighborhood of x such that ((U, V ))
has a compact closure. Since g(t) lies on ((U, V )) by taking smaller ϵ, it
is completable, say by g0. Then α(0) = g0x ∈ G(x), which implies that
G(x) is closed.

From each orbit G(x) in M choose a point s(x) which is the closest to
the origin of Rm. Since G(x) is closed we can see easily that such a point
s(x) exists. If there are more than one such points, choose a point whose
coordinate is the smallest with respect to the lexicographical order of the
coordinates of Rm. Then the mapping s : M → M , x 7→ s(x) may not
be continuous but semialgebraic. Indeed, we shall see that the graph
of s is defined using a first-order formula of the language of R. First
consider a semialgebraic set

X = {(x, y) ∈ R2m | ∃g ∈ G y = gx and ∀g′ ∈ G d(0, y) ≤ d(0, g′x)}.

Next, the graph of s is defined by

{(x, y1, . . . , ym) ∈ X | ∀(x, z1, . . . , zm) ∈ X y1 ≤ z1, . . . , ym ≤ zm}.

Hence the image S = {s(x) | x ∈ M} is a semialgebraic subset of M .

Take Y = S the closure of S in M . We shall show that Y is section-
like. The surjectivity of p1|p−1

2 (Y ) is clear. To apply Lemma 3.4 (2), take

curve germs α in M , β in Y and γ in G such that α = γβ and α is
completable. Since α is completable it is contained in a large ball, thus,
so is β because dist(0, β(t)) ≤ dist(0, α(t)). Since β is bounded in Rm, it
is completable in Rm. We hope β(0) ∈ Y . Take U and V neighborhoods
of x and y respectively such that ((U, V )) (in the extended sense) has
a compact closure. Since γ lies in ((U, V )), it follows γ is completable.
Since α(0) = γ(0)β(0) or β(0) = (γ(0))−1α(0) we have that β(0) ∈ M .
Since Y is closed in M , so β(0) ∈ Y .
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Remark 3.6. If M is locally compact, the above result can be de-
duced from [10, 6.2], since the action map is always open which is needed
in the condition of [10, 6.2]. We have seen in Theorem 3.5 the condition
of local compactness could be dropped, but if the equivalence relation
does not occur from an action, there is an example such that even if
E ⊂ M × M is a closed semialgebraic equivalence relation which is
open over M but the quotient M/E could not be semialgebraic (see the
example below [10, 6.2]).
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