• Title/Summary/Keyword: commutative rings

Search Result 226, Processing Time 0.025 seconds

ON QUASI-COMMUTATIVE RINGS

  • Jung, Da Woon;Kim, Byung-Ok;Kim, Hong Kee;Lee, Yang;Nam, Sang Bok;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.475-488
    • /
    • 2016
  • We study the structure of central elements in relation with polynomial rings and introduce quasi-commutative as a generalization of commutative rings. The Jacobson radical of the polynomial ring over a quasi-commutative ring is shown to coincide with the set of all nilpotent polynomials; and locally finite quasi-commutative rings are shown to be commutative. We also provide several sorts of examples by showing the relations between quasi-commutative rings and other ring properties which have roles in ring theory. We examine next various sorts of ring extensions of quasi-commutative rings.

On Axis-commutativity of Rings

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.461-472
    • /
    • 2021
  • We study a new ring property called axis-commutativity. Axis-commutative rings are seated between commutative rings and duo rings and are a generalization of division rings. We investigate the basic structure and several extensions of axis-commutative rings.

CHARACTERIZING ALMOST PERFECT RINGS BY COVERS AND ENVELOPES

  • Fuchs, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.131-144
    • /
    • 2020
  • Characterizations of almost perfect domains by certain covers and envelopes, due to Bazzoni-Salce [7] and Bazzoni [4], are generalized to almost perfect commutative rings (with zero-divisors). These rings were introduced recently by Fuchs-Salce [14], showing that the new rings share numerous properties of the domain case. In this note, it is proved that admitting strongly flat covers characterizes the almost perfect rings within the class of commutative rings (Theorem 3.7). Also, the existence of projective dimension 1 covers characterizes the same class of rings within the class of commutative rings admitting the cotorsion pair (𝒫1, 𝒟) (Theorem 4.1). Similar characterization is proved concerning the existence of divisible envelopes for h-local rings in the same class (Theorem 5.3). In addition, Bazzoni's characterization via direct sums of weak-injective modules [4] is extended to all commutative rings (Theorem 6.4). Several ideas of the proofs known for integral domains are adapted to rings with zero-divisors.

ON WEAKLY LEFT QUASI-COMMUTATIVE RINGS

  • Kim, Dong Hwa;Piao, Zhelin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.503-509
    • /
    • 2017
  • We in this note consider a generalized ring theoretic property of quasi-commutative rings in relation with powers. We will use the terminology of weakly left quasi-commutative for the class of rings satisfying such property. The properties and examples are basically investigated in the procedure of studying idempotents and nilpotent elements.

ω-MODULES OVER COMMUTATIVE RINGS

  • Yin, Huayu;Wang, Fanggui;Zhu, Xiaosheng;Chen, Youhua
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.207-222
    • /
    • 2011
  • Let R be a commutative ring and let M be a GV -torsionfree R-module. Then M is said to be a $\omega$-module if $Ext_R^1$(R/J, M) = 0 for any J $\in$ GV (R), and the w-envelope of M is defined by $M_{\omega}$ = {x $\in$ E(M) | Jx $\subseteq$ M for some J $\in$ GV (R)}. In this paper, $\omega$-modules over commutative rings are considered, and the theory of $\omega$-operations is developed for arbitrary commutative rings. As applications, we give some characterizations of $\omega$-Noetherian rings and Krull rings.

On Weakly Prime and Weakly 2-absorbing Modules over Noncommutative Rings

  • Groenewald, Nico J.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.33-48
    • /
    • 2021
  • Most of the research on weakly prime and weakly 2-absorbing modules is for modules over commutative rings. Only scatterd results about these notions with regard to non-commutative rings are available. The motivation of this paper is to show that many results for the commutative case also hold in the non-commutative case. Let R be a non-commutative ring with identity. We define the notions of a weakly prime and a weakly 2-absorbing submodules of R and show that in the case that R commutative, the definition of a weakly 2-absorbing submodule coincides with the original definition of A. Darani and F. Soheilnia. We give an example to show that in general these two notions are different. The notion of a weakly m-system is introduced and the weakly prime radical is characterized interms of weakly m-systems. Many properties of weakly prime submodules and weakly 2-absorbing submodules are proved which are similar to the results for commutative rings. Amongst these results we show that for a proper submodule Ni of an Ri-module Mi, for i = 1, 2, if N1 × N2 is a weakly 2-absorbing submodule of M1 × M2, then Ni is a weakly 2-absorbing submodule of Mi for i = 1, 2

ON COMMUTATIVITY OF REGULAR PRODUCTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Yeonsook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1713-1726
    • /
    • 2018
  • We study the one-sided regularity of matrices in upper triangular matrix rings in relation with the structure of diagonal entries. We next consider a ring theoretic condition that ab being regular implies ba being also regular for elements a, b in a given ring. Rings with such a condition are said to be commutative at regular product (simply, CRP rings). CRP rings are shown to be contained in the class of directly finite rings, and we prove that if R is a directly finite ring that satisfies the descending chain condition for principal right ideals or principal left ideals, then R is CRP. We obtain in particular that the upper triangular matrix rings over commutative rings are CRP.

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

THE u-S-GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

  • Wei Qi;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1523-1537
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. First, we introduce and study the u-S-projective dimension and u-S-injective dimension of an R-module, and then explore the u-S-global dimension u-S-gl.dim(R) of a commutative ring R, i.e., the supremum of u-S-projective dimensions of all R-modules. Finally, we investigate u-S-global dimensions of factor rings and polynomial rings.

ON SOME GENERALIZATIONS OF CLOSED SUBMODULES

  • DURGUN, YILMAZ
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1549-1557
    • /
    • 2015
  • Characterizations of closed subgroups in abelian groups have been generalized to modules in essentially dierent ways; they are in general inequivalent. Here we consider the relations between these generalizations over commutative rings, and we characterize the commutative rings over which they coincide. These are exactly the commutative noetherian distributive rings. We also give a characterization of c-injective modules over commutative noetherian distributive rings. For a noetherian distributive ring R, we prove that, (1) direct product of simple R-modules is c-injective; (2) an R-module D is c-injective if and only if it is isomorphic to a direct summand of a direct product of simple R-modules and injective R-modules.