DOI QR코드

DOI QR Code

On Axis-commutativity of Rings

  • Kwak, Tai Keun (Department of Mathematics, Daejin University) ;
  • Lee, Yang (Department of Mathematics, Yanbian University, Institute of Basic Science, Daejin University) ;
  • Seo, Young Joo (Department of Mathematics, Daejin University)
  • Received : 2020.08.23
  • Accepted : 2021.05.18
  • Published : 2021.09.30

Abstract

We study a new ring property called axis-commutativity. Axis-commutative rings are seated between commutative rings and duo rings and are a generalization of division rings. We investigate the basic structure and several extensions of axis-commutative rings.

Keywords

Acknowledgement

The authors thank the referee deeply for very careful reading of the manuscript and valuable suggestions in depth that improved the paper by much.

References

  1. H. E. Bell, Y. Li, Duo group rings, J. Pure Appl. Algebra, 209(2007), 833-838. https://doi.org/10.1016/j.jpaa.2006.08.002
  2. P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(1999), 641-648. https://doi.org/10.1112/S0024609399006116
  3. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38(1932), 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
  4. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  5. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).
  6. C. Huh, H. K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 167(2002), 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  7. N. K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185(2003), 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  8. T. K. Kwak, Y. Lee, Reflexive property of rings, Comm. Algebra, 40(2012), 1576-1594. https://doi.org/10.1080/00927872.2011.554474
  9. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  10. G. Marks, Duo rings and Ore extensions, J. Algebra, 280(2004), 463-471. https://doi.org/10.1016/j.jalgebra.2004.04.018
  11. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra, 174(2002), 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  12. C. P. Milies, S.K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
  13. G. Mason, Reflexive ideals, Comm. Algebra, 9(1981), 1709-1724. https://doi.org/10.1080/00927878108822678
  14. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents. Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
  15. W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra, 20(1992), 2777-2788. https://doi.org/10.1080/00927879208824488