Acknowledgement
The authors thank the referee deeply for very careful reading of the manuscript and valuable suggestions in depth that improved the paper by much.
References
- H. E. Bell, Y. Li, Duo group rings, J. Pure Appl. Algebra, 209(2007), 833-838. https://doi.org/10.1016/j.jpaa.2006.08.002
- P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31(1999), 641-648. https://doi.org/10.1112/S0024609399006116
- J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc., 38(1932), 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
- E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
- K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979).
- C. Huh, H. K. Kim, Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra, 167(2002), 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
- N. K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra, 185(2003), 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
- T. K. Kwak, Y. Lee, Reflexive property of rings, Comm. Algebra, 40(2012), 1576-1594. https://doi.org/10.1080/00927872.2011.554474
- J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
- G. Marks, Duo rings and Ore extensions, J. Algebra, 280(2004), 463-471. https://doi.org/10.1016/j.jalgebra.2004.04.018
- G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra, 174(2002), 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
- C. P. Milies, S.K. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
- G. Mason, Reflexive ideals, Comm. Algebra, 9(1981), 1709-1724. https://doi.org/10.1080/00927878108822678
- L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents. Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
- W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra, 20(1992), 2777-2788. https://doi.org/10.1080/00927879208824488