• 제목/요약/키워드: column curve

검색결과 477건 처리시간 0.024초

A new base plate system using deformed reinforcing bars for concrete filled tubular column

  • Park, Yong-Myung;Hwang, Won-Sup;Yoon, Tae-Yang;Hwang, Min-Oh
    • Steel and Composite Structures
    • /
    • 제5권5호
    • /
    • pp.375-394
    • /
    • 2005
  • An experimental study was conducted to develop a new base plate anchorage system for concrete filled tubular column under an axial load and a moment. The column was connected to a concrete foundation using ordinary deformed reinforcing bars that are installed at the inside and outside of the column. In order to investigate the moment resisting capacity of the system, horizontal cyclic loads are applied until the ultimate condition is reached with the axial load held constant. To derive a design method for moment resisting capacity, the reinforced concrete section approach was investigated with the assumption of strain compatibility. The results by this approach agreeded well with those of experiments when the bearing pressure of confined concrete and tangent modulus of steel bars are assumed appropriately. Also, it was found that the column interaction curve can be used to predict the yield strength of the base plate system.

Dynamic experimental study on single and double beam-column joints in steel traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie;Yang, Kun;Wu, Zhanjing
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.617-628
    • /
    • 2017
  • In order to study the failure mode and seismic behavior of the interior-joint in steel traditional-style buildings, a single beam-column joint and a double beam-column joint were produced according to the relevant building criterion of ancient architectural buildings and the engineering instances, and the dynamic horizontal loading test was conducted by controlling the displacement of the column top and the peak acceleration of the actuator. The failure process of the specimens was observed, the bearing capacity, ductility, energy dissipation capacity, strength and stiffness degradation of the specimens were analyzed by the load-displacement hysteresis curve and backbone curve. The results show that the beam end plastic hinge area deformed obviously during the loading process, and tearing fracture of the base metal at top and bottom flange of beam occurred. The hysteresis curves of the specimens are both spindle-shaped and plump. The ultimate loads of the single beam-column joint and double beam-column joint are 48.65 kN and 70.60 kN respectively, and the equivalent viscous damping coefficients are more than 0.2 when destroyed, which shows the two specimens have great energy dissipation capacity. In addition, the stiffness, bearing capacity and energy dissipation capacity of the double beam-column joint are significantly better than that of the single beam-column joint. The ductility coefficients of the single beam-column joint and double beam-column joint are 1.81 and 1.92, respectively. The cracks grow fast when subjected to dynamic loading, and the strength and stiffness degradation is also degenerated quickly.

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

지반의 비선형거동을 고려한 단일현장타설말뚝의 의사정적해석 (Pseudostatic Analysis of Single Column/Shafts Considering Nonlinear Soil Behavior)

  • 이준규;김병철;정상섬;송성욱
    • 대한토목학회논문집
    • /
    • 제28권1C호
    • /
    • pp.31-40
    • /
    • 2008
  • 본 연구에서는 지진하중을 받는 Single Column/Shaft의 내진해석으로 의사정적해석법을 적용하였으며 해석상에서 지반의 비선형 거동특성을 나타내는 다양한 수평방향 하중전이특성(p-y 곡선, Bi-linear 곡선)를 이용하여 지반-말뚝의 상호작용을 고려하였다. 비선형 지반모델을 적용한 해석은 지반-말뚝 시스템의 지진거동을 간편히 예측할 수 있었으며 동일한 해석조건에서 응답변위법에 의한 Single Column/Shaft의 수평거동이 진도법에 근거하여 산정한 해석결과보다 크게 예측되었다. 두부경계조건과 상대강성이 Single Column/Shaft의 단면력에 미치는 영향을 분석하기 위해 다양한 지반모델에 대한 변수연구를 수행한 결과, 두부경계가 고정이고 말뚝강성이 감소할수록 수평변위가 작은 것으로 나타났으며, JRA의 Bi-linear 지반모델을 적용한 해석은 Single Column/Shaft의 수평거동을 비교적 정확히 예측하였다.

SC 합성기둥의 내화성능에 대한 해석연구 (Analytical Study on the Fire Resistance of SC Composite Column)

  • 임윤희;강성덕;오명호;김명한;김상대
    • 한국강구조학회 논문집
    • /
    • 제19권3호
    • /
    • pp.335-344
    • /
    • 2007
  • 기존 합성기둥의 장점을 유지하면서 콘크리트 충전 시 거푸집 공사의 절감과 충전상태의 육안 확인이 가능한 철골 콘크리트 합성기둥(이하 SC 합성기둥)에 대한 연구가 활발히 진행되고 있다. SC 합성기둥은 콘크리트가 철골의 웨브를 둘러싸고 있어 화재 발생시 높은 열이 웨브까지 전달되는 시간을 지연시켜 뛰어난 내화성능을 가질 것으로 예상할 수 있다. 본 연구에서는 SC 합성기둥에 대해 열전달 해석을 수행하였고, 이를 바탕으로 P-M 상관 곡선을 이용하여 내화성능을 평가를 하였고, 이때의 해석변수는 콘크리트 면적비와 내화피복두께로 하였다. 또한 열전달 해석 방법을 검증하기 위해서 실제 수행된 실험 결과와 비교하여 이의 적절성을 검증하였다.

요추후만증을 가진 여자 노인 환자의 정적 척추부하 검사와 허리신전근력과의 관계 (A study on the relationship of lumbar extensor muscle power and static spinal loaded test for old female patients with lumbar degenerative kyphosis)

  • 김성호;김명준
    • 대한정형도수물리치료학회지
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 2003
  • The purpose of this study was to investigate relationship of lumbar extensor muscle power & spinal column curve for old female patients with LDK(Lumbar degenerative kyphosis). Subjects were composed of 37 old female with LDK. The subjects were tested in their spinal segment movement and spinal column curve with Spinal-$Mouse^{\leq}$ in $1^{st}$ loaded test and $2^{nd}$ loaded test and then tested lumbar extensor muscle power with $Medx^{\leq}$ lumbar extension machine. The results of this study, were as follow; There were statistically significant difference $1^{st}$ loaded test and $2^{nd}$ loaded test in upright position increase spinal column forwardly(p<0.01) and decrease lumbar lordosis angle(p<0.01), but no statistically significant difference $1^{st}$ loaded test and $2^{nd}$ loaded test thoracic and hip & sacrum curve angle. Their lumbar extensor muscle poser is very weakness, 61.4% of normal people.

  • PDF

가속도 최적화 및 형상 최적화를 통한 수직 컬럼 이동형 머시닝 센터의 진동 저감에 대한 연구 (Study on decreasing displacement of the MC(machining center) moved column with high-speed for optimization of acceleration and DOE(Design Of Experiment))

  • 조영덕;이춘만;윤상환;정원지
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.35-42
    • /
    • 2008
  • By the reason of increased demand of high productivity and quality, the manufacturer have an effort in many directions of a machine tool industries. Among there, we proposed method of decreasing displacement in MC(machining center). In other words, Quality related with vibration of a tool cutting products. For decreasing it, improved by optimizing a shape of the column-part and acceleration curves of motors. In this paper we could find design factors has much influence on decreasing the displacement using the DOE(Design of Experiments) and optimized the level of the factors using $ADAMS^{(R)}$ and $MINITAB.^{(R)}$ And we suggest optimized a acceleration curve using $Matlab^{(R)}$.

흡착공정을 이용한 프레온-12와 공기혼합가스의 분리 (Separation of Freon-12 and Air Mixture by Adsorption Process)

  • 강석호;이태진;안희관;김윤갑
    • 한국대기환경학회지
    • /
    • 제9권1호
    • /
    • pp.101-106
    • /
    • 1993
  • In order to separate the Freon-12 and air mixture$(CF_2Cl_2/Air=0.1/99.9 vol.%)$ by pressure swing adsorption (PSA), the breakthrough curve was experimentally observed in a fixed bed adsorption column. A single adsorber was packed with various adsorbents such as, the activated carbon(S-AC, W-AC) and the molecular sieve(MS-5A, MS-13X). The order of appearance of breakthrough curve is MS-5A > MS-13X > W-AC > S-AC. The activated carbon was found to be more effective adsorbent for separating Freon-12 from the mixture than the molecular sieve was. From the experimental data obtained by the separation of Freon-12 gas out of the air stream in the steady-state PSA process cycle, whose size is the same one of column used for the breakthrough curve observation, it has been confirmed that Freon-rich gas could be obtained from the purge step of PSA and Freon-free air could be obtained from the adsorption step of PSA cycle.

  • PDF

설계 기준에 따른 휨,압축 부재의 P-M상관도 비교 (A Comparative Study of P-M Interaction Curve of the Circular Concrete Column according to Design for Standard)

  • 김희용;김영진;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.143-144
    • /
    • 2010
  • 강도 설계법에 기반을 둔 콘크리트구조설계기준은 전 응력의 계산이 불가능하기 때문에 한계 상태 설계법에 근간을 둔 EC2와 휨 압축부재의 P-M상관도를 비교분석하였다. 해석결과, 설계기준에 따라 P-M상관도는 거의 유사하였지만 피복두께가 클 경우 EC2에 의한 값이 보다 안전 측에 해당하였다.

  • PDF

Seismic performance of mixed column composed of square CFST column and circular RC column in Chinese archaized buildings

  • Xue, Jianyang;Zhou, Chaofeng;Lin, Jianpeng
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.451-464
    • /
    • 2018
  • This paper presents some quasi-static tests for 4 mixed columns composed of CFST column and RC column. The seismic performance and failure mode were studied under low-cyclic revised loading. The failure mode was observed under different axial compression ratios. The hysteretic curve and skeleton curve were obtained. The effects of axial compression ratio on yield mechanism, displacement ductility, energy dissipation, stiffness and strength attenuation were analyzed. The results indicate that the failure behavior of CFST-RC mixed column with archaized style is mainly caused by bending failure and accompanied by some shear failure. The axial compression ratio performs a control function on the yielding order of the upper and lower columns. The yielding mechanism has a great influence on the ductility and energy dissipation capacity of specimens. Based on the experiment, finite element analysis was made to further research the seismic performance by ABAQUS software. The variable parameters were stiffness ratio of upper and lower columns, axial compression ratio, yielding strength of steel tube, concrete strength and rebar ratio. The simulation results show that with the increase of stiffness ratio of the upper and lower columns, the bearing capacity and ductility of specimens can correspondingly increase. As the axial compression ratio increases, the ductility of the specimen decreases gradually. The other three parameters both have positive effect on the bearing capacity but have negative effect on the ductility. The results can provide reference for the design and engineering application of mixed column consisted of CFST-RC in Chinese archaized buildings.