• Title/Summary/Keyword: cold expansion

Search Result 193, Processing Time 0.021 seconds

Effect of Freezing of Paste on the Formation of Chou (반죽의 냉동처리가 Chou 형성에 미치는 효과)

  • Lee, Sun-Ok;kim, Myoung-Ae
    • Korean journal of food and cookery science
    • /
    • v.10 no.4
    • /
    • pp.405-411
    • /
    • 1994
  • This study was conducted to know the quality of chou made with flour pastes which were stored at different conditions of quick freezing, slow freezing, cold and room temperature. Also, this study included investigation of the chou properties such as expansion, sensory evaluation, degree of gelatinization, and physical and structural properties of paste were observed. There were not significant differences m diameter, height, volume, appearance, hollow formation, and sensory evaluation between the chou made with the paste stored at freezing condition and chou directly baked after pasting. Quick and slow freezing storages did not significantly affect the properties of chou, and the same results were obtained among the chou made with pastes thawed at room temperature and in microwave ovenrange. The chou of pastes stored at room temperature and in microwave ovenrange. The chou of pastes stored at room temperature and stored in refrigerator showed lowed expansion and value of sensory evaluation than those of frozen pastes. The paste stored at room temperature had the lowest hardness and viscosity compared with the other storage conditions. According to the observation of light microscope. the lipid bodies of the paste of freezing storage smaller those of the room temperature and refrigerator storage. The expantion of chou made with paste stored at room temperature was greatly decreased due to the high coalescence of lipid bodies, and also the paste components such as lipid, starch granule gluten at room temperature had inferior dispersion condition. The general tendency of the degree of gelatinization of chou were low in all treatments of paste. The values were 23.5%~46.0% in freezing, 77.3% in room temperature, 68.7% in directly baked after pasting, and 61.0% in cold storage, respectively. The formation and the taste of chou made with frozen paste were similar to those of chou directly baked pasting.

  • PDF

Analysis of the Preference in Expression Style for the Library Weekly Poster (도서관 주간 포스터의 표현 방식에 대한 선호도 분석)

  • Lim, Seong-Kwan
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.2
    • /
    • pp.85-106
    • /
    • 2021
  • The purpose of this study is to analyze the form and color of the letter layout among 31 expression methods of official posters during the library week from 1964, for 57 years, and to propose the direction of poster production in the future by revealing what citizens prefer most by conducting a survey based on the results. As a result of analyzing the poster expression form for achieving the purpose of the study, the most common character layout was 'the top position of the character' in 13 out of 31 (41.9%), and in color, 'chromatic color' in 30 out of 31 (96.8%), and the temperature of color with 'cold color', 'fading color' and 'shrink color' in 18 out of 31 (58.1%), respectively. The results of the survey showed that the most preferred was 'top position of characters' for letter layout, and 'chromatic color' and 'cold color', 'advance color' and 'expansion color' were the most preferred for the color classification. Therefore, the character layout of the weekly poster for the library needs to be produced using 'the center position of the letter', and the colors need to be made using 'chromatic color', 'warm color', 'advance color' and 'expansion color'.

Evaluation of water-Soluble Lubricant for Cold Forging and Optimization of Coating Process (냉간단조용 수용성 윤활제의 평가 및 윤활 처리 공정의 최적화)

  • Lim, W.J.;Lee, I.S.;Je, J.S.;Ko, D.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.149-154
    • /
    • 2007
  • The zinc prosphate film treatments used to lubricating treatment of mostly cold forging processes. But there are several problems happened to lubricating treatment process such as happening harmful environment on person, complex lubrication processing occurring in energy and time consumption, eco-destructive and chemical by-product generation, the needs of waste disposal etc. As a result, a water-soluble lubricant was developed to replace the perfect or some of the zinc prosphate film in the world. In order to solve these problems, this study evaluated the performance of the typical water-soluble. In this study, for these requirement inquiry of two part. First, about possibility of replace zinc phosphate lubricant, quantitatively evaluation developed of water-soluble lubricant for cold forging vs zinc phosphate lubricant. Second, About optimization of coating Process use to equipment with practicable automatic coating Process. The performance evaluation of these lubricants was conducted using the double cup extrusion test and spike forging test. With the use of the commercial FE code DEFORM, friction factor calibration curves, i.e. cup height ratio vs. punch stroke and spike height vs. punch stroke, were established for different friction factor values. By matching the cup height ratio and the punch stroke and spike height vs. punch stroke from experiment to that obtained from FE simulations, the friction factor of the lubricants was determined. Survey of comparative analysis use to SEM that sprayed lubricant surface structure of grain shape and characteristic of lubricant performance based on grain shape and deformed lubricant surface expansion. As a result, developed lubricant were found to perform comparable to or better than zinc phosphate. And thought this result, innovatively cope with generated problem of existing lubrication process.

  • PDF

A Numerical Analysis of Flow Field in the Silt Nozzle During Cold Spray Coating Process (저온분사 코팅공정에서 초음속 슬릿노즐 사용시 유동장 해석)

  • Park, Hye-Young;Park, Jong-In;Jung, Hun-Je;Jang, Kyoung-Soo;Baek, Ui-Hyun;Han, Jeong-Whan;Kim, Hyung-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The cold spray process is an emerging technology that utilizes high velocity metallic particles for surface coating. Metallic powder particles are injected into a converging-diverging de Laval nozzle and accelerated to a high velocity by a supersonic gas flow. The cold spray process normally uses a circular nozzle that has a rather narrow spraying range. To overcome this fault, a slit nozzle was considered in this study. The slit nozzle is anticipated to reduce the coating process time because it has a wider coating width than the circular nozzle. However, the slit nozzle can reduce the coating efficiency because it does not allow as much gas and particle velocity as the circular nozzle. To improve the coating efficiency of a slit nozzle, the shape of the slit nozzle was modified. And the results of gas flow and particle behaviour according to the nozzlers shape were compared by the a numerical analysis. As a results, as Expansion Ratio(ER) of 7.5 was found to be the most optimal condition for enhancing the spraying efficiency when the ER was changed by the variation of nozzle neck and exit size.

Distribution of Water Masses and Characteristics of Temperature Inversion in the Western Seas of Jeju Island in Spring (봄철 제주도 서부해역의 수괴 분포와 수온역전 특징)

  • Kang, So-Young;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.191-207
    • /
    • 2022
  • Using the results of CTD casts made in Spring from 2017 to 2021, in this study we investigated the water mass distribution and occurrence of temperature inversion in the western seas of Jeju Island in spring. The distribution of water masses was characterized by cold and fresh water in the northwest and warm and saline water in the southeast, forming a strong thermohaline front running in the southwest-to-northeast direction. Strong temperature inversion mainly occurred in the frontal boundary when the cold water intrudes beneath the warm water at depths of 30-50 m. Analysis of the mixing ratio demonstrated that Jeju Warm Water is dominantly distributed in the western seas of Jeju Island, but its ratio can be modified depending on the southward extension of Yellow Sea Cold Water (YSCW). Results of in situ measurement showed that in 2020, the YSCW largely expanded to the western seas of Jeju Island, occupying approximately 40 % of the mixing ratio. Due to the expansion of YSCW, a strong thermohaline front was formed in the study area, thereby causing thick and strong temperature inversion. On the other hand, in 2018 the mixing ratio of YSCW was minimum (~18%) during the study period of 2017-2021, and thus a relatively weak frontal boundary was formed, without the occurrence of temperature inversion. The observational results also suggest that the interannual changes of water mass distribution and the associated temperature inversion in the western seas of Jeju Island are closely related with wind-driven Yellow Sea circulation in spring, which is the summer monsoon transition period.

Effect of Filled Hole on Strength Behavior of CFRP Composites at Cold Temperature Dry and Elevated Temperature Wet (저온건조($-55^{\circ}C$) 및 고온다습 조건($108.3^{\circ}C$)의 기계적 체결 홀이 탄소섬유강화 복합재의 강도 특성에 미치는 영향 연구)

  • Kim, Hyo-Jin
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.82-88
    • /
    • 2009
  • The effect of open and filled holes on the strength behavior of carbon fiber reinforced polymeric (CFRP) composites was investigated. The strength was measured at room temperature dry, cold temperature dry, $-55^{\circ}C$, and elevated temperature wet, $108.3^{\circ}C$ on several different laminate configurations. Based on the experimental data presented, it is shown that the filled hole tensile strength is larger than that of open hole by reducing damage around the hole due to the constraint imposed by the fastener. The tensile strength at cold temperature dry, $-55^{\circ}C$ is increased with the brittleness by the thermal expansion coefficient of fiber and matrix. The compressive strength at elevated temperature wet, $108.3^{\circ}C$ is decreased by the cause of interfacial deterioration between fiber and matrix with moisture absorption.

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • CAHYONO, Tekat Dwi;YANTI, Hikma;ANISAH, Laela Nur;MASSIJAYA, Muh Yusram;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.907-916
    • /
    • 2020
  • This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

Study on the performance characteristics of a new CO2 auto-cascade heat pump system (새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.191-196
    • /
    • 2017
  • Owing to the harmful environmental effects of HCFC and CFC refrigerants discovered in the late 20th century, the need for environmentally friendly refrigerants such as $CO_2$ in cooling systems has increased. Air-source $CO_2$ heat pumps that utilize ambient heat in cold winter are less efficient because of a higher evaporation temperature, and it is difficult to manufacture the components of the heat pump owing to a super critical pressure of over 130 bar. This research aims to overcome these disadvantages and improve energy efficiency by introducing a new lower-pressure $CO_2$ auto-cascade heat pump system. $CO_2$-R32 zeotropic refrigerants were considered for two-stage expansion and effective cooling heat exchanging system configurations of the new auto-cascade heat pump. The results indicated that the efficiency of the two-stage expansion system was higher than that of the original one-stage expansion system. Furthermore, the two-stage expansion system showed significant performance improvements when the two-stage expansion stage from highest pressure of 70bar, intermediate expansion pressure of 25bar, and final low pressure of 10bar is applied. The COP of the new two-stage auto-cascade system (2.332) was 43.15% higher than that of the present simple auto-cascade system (1.629). Refrigerants having an evaporation temperature of $-10^{\circ}C$ or lower can be obtained that can be easily evaporated in an evaporator even at a low temperature.

Performance Study of Supersonic Nozzle with Asymmetric Entrance Shape (유입부 비대칭 노즐의 성능연구)

  • Lee Ji-Hyung;Kim Joug-Keun;Lee Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.40-45
    • /
    • 2005
  • Techniques used for throcket motors are mainly classified as fixed nozzles with mechanical exhaust jet interferences on the expansion region (such as jet tabs and jet vanes) and movable nozzles(such as ball&socket md flexible seal). Using the numerical analysis and the cold-flow test, this paper evaluates the performance of supersonic nozzle for asymmetric entrance shape at tilted position of ball&socket nozzle. Numerical results show that the asymmetric effects in the flow fields are gradually diminished up to the nozzle throat and are not noticeable downstream of the nozzle throat. Although the calculated thrust and the lateral force are less than those of cold-flow test, two results show a flirty good agreement.

  • PDF

Thermal and Dynamical Evolution of a Gaseous Medium and Star Formation in Disk Galaxies

  • Kim, Chang-Goo;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2011
  • Formation of self-gravitating gas clouds and hence stars in galaxies is a consequence of both thermal and dynamical evolution of a gaseous medium. Using hydrodynamics simulations including cooling and heating explicitly, we follow simultaneously thermal and dynamical evolution of galactic gas disks to study dynamics and structures of galactic spiral shocks with thermal instability and regulation of the star formation rates (SFRs). We first perform one-dimensional simulations in direction perpendicular to spiral arms. The multiphase gas flows across the arm soon achieve a quasi-steady state characterized by transitions from warm to cold phases at the shock and from cold to warm phases in the postshock expansion zone, producing a substantial fraction of intermediate-temperature gas. Next, we allow a vertical degree of freedom to model vertically stratified disks. The shock front experiences unsteady flapping motions, driving a significant amount of random gas motions, and self-gravity promotes formation of bound clouds inside spiral arms. Finally, we include the star formation feedback in both mechanical (due to supernova explosion) and radiative (due to FUV heating by young stars) forms in the absence of spiral arms. At saturation, gravitationally bound clouds form via thermal and gravitational instabilities, which are compensated by disruption via supernova explosions. We find that the FUV heating regulates the SFRs when gas surface density is low, confirming the prediction of the thermal and dynamical equilibrium model of Ostriker et al. (2010) for star formation regulation.

  • PDF