• 제목/요약/키워드: cognitive algorithms

검색결과 106건 처리시간 0.024초

톱니바퀴 관련 문제해결 과정에서 발생하는 오류 원인의 분석 및 지도방안 (A Study on the Analysis and Correction of Error for the Gearwheel-involved Problem)

  • 노은환;정상태;김민정
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권1호
    • /
    • pp.1-17
    • /
    • 2014
  • 최근 학생의 수학적 사고력 및 문제해결능력의 신장이 강조되고 있다. 그럼에도 불구하고 실제 학생들이 문제를 해결하는 과정을 살펴보면 주어진 문제 유형과 관련된 알고리즘을 사용하여 기계적으로 해결하는 경우가 많다. 이러한 문제해결 방법으로는 최근 강조되고 있는 목표를 달성하기 어려울 뿐만 아니라 오히려 오류나 오 개념을 형성할 수도 있다. 그런데 일관성을 갖는 오류는 현재 학습자의 인지능력 상태를 파악할 수 있게 하고, 학습 실패 원인에 대한 정보를 제공해 준다는 긍정적 측면이 있다. 이에 본 연구에서는 톱니바퀴 관련 문제해결 과정에서 학생이 보이는 오류를 분석하여 그 원인을 진단하고, 오류의 교정과 예방을 위한 바람직한 지도방안을 마련하고자 하였다. 학생의 오류를 분석한 결과 사용할 수 있는 다른 방법이 있음에도 불구하고 비례식만을 이용하여 해결하려고 하였으며, 자신이 세운 비례식이 옳은지 그른지에 대해서도 전혀 고려를 하지 않았다. 이는 다른 많은 요인이 있겠으나, 교과서와 교육과정의 구성도 중요한 요인 중 하나라고 할 수 있다. 이와 같은 결과를 토대로 문제해결과 관련된 세 가지 접근방법과 톱니바퀴 관련 문제와 연관되어 교육과정에 제시되는 개념의 내용과 순서 및 지도방안에 대한 논의와 시사점을 제시하였다.

소셜데이터 분석 및 인공지능 알고리즘 기반 범죄 수사 기법 연구 (Artificial Intelligence Algorithms, Model-Based Social Data Collection and Content Exploration)

  • 안동욱;임춘성
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.23-34
    • /
    • 2019
  • 최근 디지털 플랫폼을 활용한 민생 위협 범죄는 '15년 약 14만여 건, '16년 약 15만여 건 등 사이버범죄 지속 증가 추이이며 전통적인 수사기법을 통한 온라인 범죄 대응에 한계가 있다고 판단되고 있다. 현행 수기 온라인 검색 및 인지 수사 방식만으로는 빠르게 변화하는 민생 위협 범죄에 능동적으로 대처 할 수 없으며, 소셜 미디어 특성상 불특정 다수에게 게시되는 콘텐츠로 이루어 졌다는 점에서 더욱 어려움을 겪고 있다. 본 연구는 민생 침해 범죄가 발생하는 온라인 미디어의 특성을 고려한 콘텐츠 웹 수집 방식 중 사이트 중심의 수집과 Open API를 통한 방식을 제시한다. 또한 불법콘텐츠의 특성상 신속히 게시되고 삭제되며 신조어, 변조어 등이 다양하고 빠르게 생성되기 때문에 수작업 등록을 통한 사전 기반 형태소 분석으로는 빠른 인지가 어려운 상황이다. 이를 해소 하고자 온라인에서 벌어지는 민생 침해 범죄를 게시하는 불법 콘텐츠를 빠르게 인지하고 대응하기 위한 데이터 전처리인 WPM(Word Piece Model)을 통하여 기존의 사전 기반의 형태소 분석에서 토크나이징 방식을 제시한다. 데이터의 분석은 불법 콘텐츠의 수사를 위한 지도학습 기반의 분류 알고리즘 모델을 활용, 투표 기반(Voting) 앙상블 메소드를 통하여 최적의 정확도를 검증하고 있다. 본 연구에서는 민생경제를 침해하는 범죄를 사전에 인지하기 위하여 불법 다단계에 대한 사례를 중심으로 분류 알고리즘 모델을 활용하고, 소셜 데이터의 수집과 콘텐츠 수사에 대하여 효과적으로 대응하기 위한 실증 연구를 제시하고 있다.

  • PDF

Interface of Tele-Task Operation for Automated Cultivation of Watermelon in Greenhouse

  • Kim, S.C.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • 제28권6호
    • /
    • pp.511-516
    • /
    • 2003
  • 컴퓨터 시각 기술은 다양한 농작업 생력화에 있어 핵심적인 역할을 해왔다. 비록 컴퓨터 시각 기술이 광범위한 분야에 성공적으로 적용되고 있다고는 하지만 인간의 시각을 통한 인지 능력에 비하면 현재의 컴퓨터 시각 기술은 여전히 매우 미흡한 수준에 있다고 하겠다. 특히, 작업환경이 비구조적이고 가변적인 농작업 환경 하에서의 작업의 생력화는 이러한 기술적 문제를 극복하는 것이 작업의 성패를 좌우하게 된다. 본 논문에서는 원격작업 개념을 도입하여 작업자와 작업기계간의 호환적인 인터페이스를 구축하고 컴퓨터와 인간의 혼합형 의사결정 시스템을 구현하여 기존의 컴퓨터 시각 기술이 갖는 인지 처리 능력의 한계를 극복하는 시스템을 제안하였다. 시설재배에 요구되는 전정, 관수, 방제, 제초, 수확, 운반 등과 같은 다양한 작업들은 작업 대상체에 대한 인식을 바탕으로 수행된다. 특히 가변적인 자연 조명 환경 하에서 수박과 줄기 그리고 잎이 혼재되어 있는 재배현장의 영상으로부터 수박을 추출하여 그 위치 좌표를 산출하는 작업은 기술적으로 매우 어려운 작업이며 수박이 잎과 줄기로 덮혀 있는 경우 더욱 어려워진다. 제안한 개념을 구현하기 위하여 무선으로 수신되는 재배 현장의 수박 영상으로부터 수박을 인식하도록 하였다. 개발한 시스템은 작업자(농민), 컴퓨터 그리고 자동화 작업설비가 상대적으로 수월성을 갖는 기능을 중심으로 역할을 분담하도록 구축하였다 개발 시스템은 크게 무선원격 모니터링 및 작업제어 모듈, 무선원격 영상 획득 및 데이터 송수신 모듈, 작업자와 컴퓨터간의 인터페이스 모듈로 구성하였다 작업자는 RF 송수신 모듈을 통하여 무선으로 획득되어 터치 스크린에 보여지는 영상을 통하여 작업 지시를 하게 되고 이 작업 지시로부터 컴퓨터는 국부 영상처리 시퀀스를 통하여 수박을 추출하고 위치를 산출하게 된다. 개발한 인터페이스 시스템은 가변적이고 복잡한 작업 환경하에서 작업 대상체의 정보를 실시간으로 성공적으로 추출하였다. 제안한 원격작업 인터페이스 시스템은 다양한 생물생산 작업의 생력화를 촉진하는 중심적 역할을 할 것으로 기대된다.

일 대학병원에서 외상 후 스트레스장애 입원환자의 약물 치료 경향 (A Trend in Pharmacotherapy for Inpatients with Posttraumatic Stress Disorder at a Single University Hospital)

  • 민정아;정영은;서호준;박원명;전태연;채정호
    • 대한불안의학회지
    • /
    • 제4권1호
    • /
    • pp.42-48
    • /
    • 2008
  • 현재 PTSD와 관련한 여러 병태생리 기전들이 밝혀지고 있으며 이에 초점을 둔 다양한 약물치료가 행해지고 있다. 본 연구에서는 일 대학병원에서 PTSD로 진단된 환자들의 의무기록을 검토하여 약물치료의 경향에 대해 알아보았다.1998년 1월부터 2007년 12월까지 DSM-IV에 의해 PTSD로 진단된 입원 환자 75명이 대상군이 되었으며, 이들의 인구학적 요인들, 입원기간, 외상의 종류, 외상 후 경과시간 및 정신과적 공존병리 및 처방 받은 약물을 조사하였다. 조사 결과, 75명 중 남자는 33명, 여자는 42명이었다. 정신과적 공존병리는 총 50명(66.7%)에서 존재하였으며, 우울장애, 인지장애, 정신장애 및 불안장애 순이었다.73명(97%)의 대상군은 항우울제를 처방 받았으며, 그 중 paroxetine이 54.7%로 가장 많았고 두 가지 이상의 항우울제를 처방 받은 경우도 24%였다. 또 거의 대부분의 환자에서 비정형 항정신병약물(33.3%), 기분안정제(17.3%),항불안제(94.7%)가 항우울제와 병용 처방된 것으로 조사되었다. 여러 제한점에도 불구하고 본 연구에서 얻어진 약물 처방 경향은 향후 국내 실정에 맞는 치료 지침을 수립하는 데에 하나의 근거 자료가 될 수 있을 것이다.

  • PDF

집단지성 기반 학습자료 북마킹 서비스 시스템 (Learning Material Bookmarking Service based on Collective Intelligence)

  • 장진철;정석환;이슬기;정치훈;윤완철;이문용
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.179-192
    • /
    • 2014
  • 최근 IT 환경의 변화에 따라 웹 서비스를 기반으로 대규모 사용자 대상의 상호 참여적인 MOOC(Massive Open Online Courses)과 같은 온라인 교육 환경이 부상하고 있다. 그러나 온라인 교육 시스템은 원거리로 학습이 이루어짐에 따라 학습자의 자발적 동기를 꾸준히 유지하기 어려우며, 또한 학습자 간에 지식을 공유하고 공유한 지식을 활용하는 기능이 부족하다. 이러한 문제를 극복하기 위해 구성주의적 학습이론과 집단지성에 기반하여 학습자가 보유한 학습자료를 공유하고 개인화된 학습자료 추천을 받을 수 있는 학습자료 북마킹 서비스인 WeStudy를 구현하였다. 위키피디아(Wikipedia), 슬라이드쉐어 (SlideShare), 비디오렉쳐스 (VideoLectures) 등 현존하는 집단지성 기반 서비스들의 주요 기능으로부터 필요한 집단지성 기능들을 검토하였으며, 본 서비스의 주요 기능으로 1) 리스트 및 그래프 형태의 학습자료 리스트 시각화, 2) 개인화된 학습자료 추천, 3) 보다 상세한 학습자료 추천을 위한 관심 학습자 지정 등을 도출하여 시스템을 설계하였다. 이후, 웹 기반으로 구현된 세 가지 주요기능 별로 개량된 휴리스틱 사용성 평가 방법을 통해 개발된 시스템의 사용성 평가를 실시하였다. 10명의 HCI 분야 전공자 및 현업 종사자를 대상으로 정량적 및 정성적인 평가 결과, 세 가지의 주요 기능에서 전반적으로 사용성이 우수한 것으로 판정되었다. 주요 기능 별 정성적인 평가에서 도출된 여러 마이너 이슈들을 반영할 필요가 있으며, 향후 대규모 사용자를 대상으로 본 서비스를 보급하고 이용할 수 있도록 제공하여 자발적인 지식 공유 환경을 조성할 수 있을 것으로 전망된다.

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.