• Title/Summary/Keyword: coastal sea

Search Result 3,161, Processing Time 0.028 seconds

Application of a Large Ocean Observation Buoy in the Middle Area of the Yellow Sea (황해중부해역에서의 대형 해양관측부이의 운용)

  • Shim, Jae-Seol;Lee, Dong-Young;Kim, Sun-Jeong;Min, In-Ki;Jeong, Jin-Yong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.401-414
    • /
    • 2009
  • Yellow Sea Buoy (YSB) was moored in the center of the Yellow Sea at 35$^{\circ}$51'36"N, 124$^{\circ}$34'42"E, on 12 September 2007. YSB is a large buoy of 10 m diameter, and as such is more durable against collision by ships and less likely to be lost or removed by fishing nets compared to small ordinary buoys of 2.3 m diameter. YSB is equipped with 12 kinds of oceanic and meteorologic instruments, and transfers its realtime observation data to KORDI through ORBCOMM system every 1 hour. Data on ocean winds, air temperature, air pressure, and sea temperature appear to be accurate, while water property sensors (AAQ1183), which are sensitive to fouling, are producing errors. YSB (2007), Ieodo ocean research station (2003), and Gageocho ocean research station, which was completed in October 2009, will establish the 2 degrees interval by latitude in the Yellow Sea, and they will contribute though the 'Operational Oceanography System' as the important realtime observation network.

The distribution characteristics of Sb and As in the surface sediment from the Yellow Sea and the coastal areas of Korea (황해와 한국연안해역 표층퇴적물중 Sb과 As의 농도분포특성)

  • ;Jingyun Han
    • Journal of Environmental Science International
    • /
    • v.12 no.10
    • /
    • pp.1121-1129
    • /
    • 2003
  • We report the distributions of Sb and As in the surface sediment of the Yellow Sea and the coastal areas of Korea. The mean concentrations of Sb and As range from 0.68 ppm to 1.01 ppm and from 7.4 ppm to 15.8 ppm, respectively, and show relatively the high concentrations at the coast of Weolseong in the East Sea for Sb and at the coast of Gadeok Island in the South Sea far As. This may be due to the anthropogenic input of these elements via river and atmosphere from industry complex and agriculture regions around the study areas. Because of the difference of clay to silt proportion, the correlation between silt plus clay contents and Sb, As in the coastal surface sediment of Korea is not shown, the concentrations of Sb and As vary widely for the sample in which the silt plus clay contents are the same. Therefore, we suggest that the distribution patterns of Sb and As in surface sediment of the Yellow Sea and the coastal areas of Korea are mainly controlled by the anthropogenic inputs and the sediment characteristics. On the other hand, the Sb concentrations are lower than those of the lowest effect level which is the standard of judgment for contamination, while the As concentrations are higher than those of the lowest effect level. This implies that the surface sediments of the Yellow Sea and the coastal areas of Korea are considerably contaminated for As.

Characteristic Analysis on the Wind Data in the Pohang Coastal Zone (포항 연안 바람자료의 특성분석)

  • Jeong, Weon Mu;Cho, Hongyeon;Baek, Wondae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.190-196
    • /
    • 2015
  • The estimation method of the sea wind information using the nearby land wind data have been widely used. However, it is insufficient to examine the limitation of the method based on the characteristics of the wind data. In this study, the characteristics of the wind data are analysed and compared to check the limitation of the existing conventional method. The data are observed at the same time period in the land and sea stations in Pohang coastal zone. In particular, the analysis are focused on the direction data simply overlooked in the analysis target. The method is suggested as a useful tool for the various analysis of the wind direction data. The results show that the statistical informations between the land and sea wind data are quite different though the lineal distance between stations are not large (${\fallingdotseq}3.8km$). The difference is attributed to come from the geometrical gradient and elevation difference between land and sea areas. As a consequence, the quantitative estimation error should be checked preliminarily using the land-sea monitoring data sets because the sea wind estimation using land data is essentially unacceptable.

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

Hierarchical Bayesian Model Based Nonstationary Frequency Analysis for Extreme Sea Level (계층적 베이지안 모델을 적용한 극치 해수위 비정상성 빈도 분석)

  • Kim, Yong-Tak;Uranchimeg, Sumiya;Kwon, Hyun-Han;Hwang, Kyu Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.34-43
    • /
    • 2016
  • Urban development and population increases are continuously progressed in the coastal areas in Korea, thus it is expected that vulnerability towards coastal disasters by sea level rise (SLR) would be accelerated. This study investigated trend of the sea level data using Mann-Kendall (MK) test, and the results showed that the increasing trends of annual average sea level at 17 locations were statistically significant. For annual maximum extremes, seven locations exhibited statistically significant trends. In this study, non-stationary frequency analysis for the annual extreme data together with average sea level data as a covariate was performed. Non-stationary frequency analysis results showed that sea level at the coastal areas of Korean Peninsula would be increased from a minimum of 60.33 mm to a maximum of 214.90 mm by 2100.

Evolution of Wind Storm over Coastal Complex Terrain (연안복합지형에서 바람폭풍의 진화)

  • Choi, Hyo;Seo, Jang-Won;Nam, Jae-Cheol
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.865-880
    • /
    • 2002
  • As prevailing synoptic scale westerly wind blowing over high steep Mt. Taegulyang in the west of Kangnung coastal city toward the Sea of Japan became downslope wind and easterly upslope wind combined with both valley wind and sea breeze(valley-sea breeze) also blew from the sea toward the top of the mountain, two different kinds of wind regimes confronted each other in the mid of eastern slope of the mountain and further downward motion of downlsope wind along the eastern slope of the mountain should be prohibited by the upslope wind. Then, the upslope wind away from the eastern slope of the mountain went up to 1700m height over the ground, becoming an easterly return flow in the upper level of the sea. Two kinds of circulations were detected with a small one in the coastal sea and a large one from the coast toward the open sea. Convective boundary layer was developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west, while a thickness of thermal internal boundary layer(TIBL) form the coast along the eastern slope of the mountain was only confined to less than 200m. After sunset, under no prohibition of upslope wind, westerly downslope wind blew from the top of the mountain toward the coastal basin and the downslope wind should be intensified by both mountain wind and land breeze(mountain-land breeze) induced by nighttime radiative cooling of the ground surfaces, resulting in the formation of downslope wind storm. The wind storm caused the development of internal gravity waves with hydraulic jump motion bounding up toward the upper level of the sea in the coastal plain and relatively moderate wind on the sea.

A Study on the Behaviour Characteristics of the Saemanguem Sea Dyke Coastal Covering Stones by Sea Waves (파랑에 의한 새만금 방조제 해측 피복석 거동특성 연구)

  • Baek, SeungChul;Lee, SoYeol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.67-76
    • /
    • 2011
  • In this present study, to evaluate a behavior characteristics of the sea dyke coastal covering stone by sea waves. sea waves act on coastal structures as an impact load. During impact loading, erosion and bluff slumping occur in the coastal structures. Also, the covering stone are worn down by wave impact. The sea dyke has been used near coastal region for protection of infra-structure since 1970s in Korea. The sea dyke consist of dredged sand and covering stone mainly. The damage type of covering stone has been reported since 1970s. However, the interaction of impact load by sea wave with the covering stone has not been investigated yet properly. Mainly damage type of covering stone is an abrasion. But the study of covering stone abrasion is not sufficient. Hence, In this study, it was analyzed the interaction of impact load by sea wave and the covering stone during sea wave action on coastal structures. In order to analyze the behavior characteristics of coastal covering stone considering the magnitude and period of impact loading and to evaluate the displacement increment of covering stone during impact load, numerical analysis was carried out considering impact loading by sea wave.

A Three Dimensional Numerical Simulation of the Land and Sea breeze over Pusan Coastal Area, Korea. (부산 연안에서의 3차원 해륙풍 수치 모의)

  • 문승의;김유근
    • Journal of Environmental Science International
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 1993
  • The land and sea breeze over the Pusan coastal area is studied by three dimensional mesoscale numerical model. According to the results of the simulation experiments, both Pusan areas and Kimhae areas, the sea breeze began at 0800LST and the strongest at 1500LST and then at 1800LST. After midnight, the sea breeze changed about the land breeze and become weaker than that of the sea breeze in the daytime. Comparisons between calculations and observations showed that the characteristics of diurnal variation and v-component of the wind velocity relatively is similar to the Pusan areas. On the Kimhae areas, however, observations showed time lag which compared to the results of simulation experiments in the velocity of sea breeze and diurnal variation. From the above results, comparisons between calculations and observations is much more similar to the coastal areas than on the inland area.

  • PDF

Review of the Functional Properties and Spatial Distribution of Coastal Sand Dunes in South Korea (우리나라 해안사구 분포 현황과 기능특성에 관한 고찰)

  • Yoon, Han-Sam;Park, So-Young;Yoo, Chang-Ill
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.2
    • /
    • pp.180-194
    • /
    • 2010
  • Coastal sand dunes are dynamic and fragile buffer zones of sand and vegetation where the following three characteristics can be found: large quantities of sand, persistent wind capable of moving sand, and suitable locations for sand to accumulate. The functional properties of coastal sand dunes include the roles in sand storage, underground freshwater storage, coastal defense, and ecological environment space, among others. Recently, however, the integrity of coastal dune systems has been threatened by development, including sand extraction for the construction industry, military usage, conversion to golf courses, the building of seawalls and breakwaters, and recreational facility development. In this paper, we examined the development mechanisms and structural/format types of coastal sand dunes, as well as their functions and value from the perspective of coastal engineering based on reviews of previous researches and a case study of a small coastal sand dune in the Nakdong river estuary. Existing data indicate that there are a total of 133 coastal sand dunes in South Korea, 43 distributed on the East Sea coast (32 in the Gangwon area, and 11 in Gyeongsangbuk-do), 60 on the West Sea coast (4 in Incheon and Gyeonggi-do, 42 in Ghungcheongnam-do, 9 in Jellabuk-do, and 5 in Jellanam-do), and 30 on the South Sea coast (16 in Jellanam-do, 2 in Gyeongsangnam-do, and 12 in Jeju).

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.