DOI QR코드

DOI QR Code

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu (OWC) ;
  • Young-Gon Kim (Wind Energy Research Center, Energy Valley Industry-University Convergence Agency) ;
  • Dongjin Kim (Division of Earth Environmental System, Pusan National University) ;
  • Sang-Man Kim (Smart Grid Institute, Mokpo National University) ;
  • Min Je Kim (Department of Electrical and Control Engineering, Mokpo National University) ;
  • Wonbae Jeon (Department of Atmospheric Sciences, Pusan National University) ;
  • Chae-Joo Moon (Department of Electrical and Control Engineering, Mokpo National University)
  • Received : 2022.02.18
  • Accepted : 2023.03.23
  • Published : 2023.03.25

Abstract

In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

Keywords

Acknowledgement

This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE)(2021RIS-002).

References

  1. Ashok, K.L. (2002), "The influence of vertical wind direction shear on dispersion in the convective boundary layer, and its incorporation in coastal fumigation models", Bound. Layer Meteorol., 102(1), 1-38. https://doi.org/10.1023/A:1012710118900.
  2. Boe, J., Hall, A., Colas, F., McWilliams, J.C., Qu, X., Kurian, J. and Kapnick, S.B. (2011), "What shapes mesoscale wind anomalies in coastal upwelling zones?", Climate Dynam., 36, 2037-2049. https://doi.org/10.1007/s00382-011-1058-5.
  3. Chae, D.E., Kim, E.J., Kim, J.S. and Lee, S.H. (2020), "Impact of topographic forcing and variation of lower-level jet on local precipitation in southeast region of Korean peninsula", J. Environ. Sci. Int., 29, 1-13. https://doi.org/10.5322/JESI.2020.29.1.1.
  4. Corral, A.F., Braun, R.A., Cairns, B., Gorooh, V.A., Liu, H., Ma, L. and Sorooshian, A. (2021), "An overview of atmospheric features over the western north atlantic ocean and north american east coast - part 1: analysis of aerosols, gases, and wet deposition chemistry", J. Geophys. Res. Atmos., 126(4), e2020JD032592. https://doi.org/10.1029/2020JD032592.
  5. Cui, C., Zhang, R.H., Wei, Y. and Wang, H. (2021), "Mesoscale wind stress-SST coupling induced feedback to the ocean in the western coast of South America", J. Oceanol. Limnol., 39, 785-799. https://doi.org/10.1007/s00343-020-0182-7.
  6. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S. and Vitart, F. (2011), "The era-interim reanalysis: configuration and performance of the data assimilation system", Quarterly J. Royal Meteorol. Soc., 137(656), 553-597. https://doi.org/10.1002/qj.828.
  7. Dennis, E.J. and Kumjian, M.R. (2017), "The Impact of vertical wind shear on hail growth in simulated supercells", Amer. Meteorol. Soc., 74, 641-663. https://doi.org/10.1175/JAS-D-16-0066.1.
  8. Fan, L., Shin, S.I., Liu, Z. and Liu, Q. (2016), "Sensitivity of asian summer monsoon precipitation to tropical sea surface temperature anomalies", Climate Dynam., 47(7), 2501-2514. https://doi.org/10.1007/s00382-016-2978-x
  9. Golding, W.L. (2005), "Low-level wind shear and its impact on airlines", J. Aviat. Aerosp. Edu. Res., 14(2), 35-45. https://doi.org/10.1007/s00382-016-2978-x.
  10. Huang, T., Yang, Y., O'Connor, E.J., Lolli S., Haywood J., Osborne, M., Cheng, J.C.H., Guo J. and Yim S.H.L. (2021), "Influence of a weak typhoon on the vertical distribution of air pollution in Hong Kong: A perspective from a Doppler LiDAR network", Environ. Pollut., 276, 116534. https://doi.org/10.1016/j.envpol.2021.116534.
  11. Hunter, R., Pedersen, T.F., Dunbabin, P., Antoniou, A., Frandsen, S., Klug, H., Albers, A. and Lee, W.K. (2001), "European wind turbines testing procedure developments. Task 1: Measurement method to verify wind turbine performance characteristics", Riso National Laboratory, RISOE R-1209 (EN).
  12. Ji, H.E., Lee, S.H., Park, C. and Lee, H.W. (2014), "A case study on sea breeze circulation and ozone concentration due to the effect of cold water in the southeastern coastal area of Korea", J. Environ. Sci. Int., 23(2), 261-274. https://doi.org/10.5322/JESI.2014.23.2.261.
  13. Kim, D.Y., Kim. Y.H. and Kim, B.S. (2021a), "Changes in wind turbine power characteristics and annual energy production due to atmospheric stability, turbulence intensity, and wind shear", Energy, 214, 119051. https://doi.org/10.1016/j.energy.2020.119051.
  14. Kim, H., Moon, C.J., Kim, Y.G., Chon, K.H., Joo, J.Y. and Ryu, G.H. (2021), "Analysis of atmospheric stability for the prevention of coastal disasters and the development of efficient coastal renewable energy", J. Coastal Res., 114, 241-245. https://doi.org/10.2112/JCR-SI114-049.1.
  15. Klotz, B.W. and Jiang, Haiyan (2017), "Examination of surface wind asymmetries in tropical cyclones. Part 1: General structure and wind shear impacts", Amer. Meteorol. Soc., 145(10), 3989-4009. https://doi.org/10.1175/MWR-D-17-0019.1.
  16. Liu, W.T., Xie, X. and Niler P.P. (2007), "Ocean-Atmosphere interaction over agulhas extension meanders", J. Climate, 20(23), 5784-5797. https://doi.org/10.1175/2007JCLI1732.1.
  17. Lu, Z., Stefano, L. and Giacomo, V.L. (2020), "Lidar measurement for an onshore wind farm: wake variability for different incoming wind speeds and atmospheric stability regimes", Wind Energy, 23(3), 501-527. https://doi.org/10.1002/we.2430.
  18. Pedersen, M.M, Larsen, T.J., Madsen, H.A. and Larsen, G.C. (2019), "More accurate aeroelastic wind-turbine load simulations using detailed inflow information", Wind Energy Sci., 4(2), 303-323. https://doi.org/10.5194/wes-4-303-2019.
  19. Piotr, S., Anita, B., Jakub, B., Bogdan, B., Lukasz, C., Michal, G. and Miroslav, Z. (2021), "Measurement report: effect of wind shear on PM10 concentration vertical structure in the urban boundary layer in a complex terrain", Atmos. Chem. Phys., 21, 12113-12139. https://doi.org/10.5194/acp-21-12113-2021.
  20. Qu, B., Gabric, A.J., Zhu, J.N., Lin, D.R., Qian, F. and Zhao, M. (2012), "Correlation between sea surface temperature and wind speed in greenland sea and their relationships with NAO variability", Water Sci. Eng., 5(3), 304-315. https://doi.org/10.3882/j.issn.1674-2370.2012.03.006.
  21. Ryu, G.H., Kim, D.H., Lee, H.W., Park, S.Y. and Kim, H.G. (2016), "A study of energy production change according to atmospheric stability and equivalent wind speed in the offshore wind farm using CFD program", J. Environ. Sci. Int., 25(2), 247-257. https://doi.org/10.5322/JESI.2016.25.2.247.
  22. Ryu, G.H., Kim, H., Kim, Y.G., Chon, K.H., Joo, J.Y. and Moon, C.J. (2021), "GIS-based site analysis of and optimal offshore wind farm for minimizing coastal disasters", J. Coastal Res., 114, 246-250. https://doi.org/10.2112/JCR-SI114-050.1.
  23. Ryu, G.H., Kim, Y.G., Kwak, S.J., Choi, M.S., Jeong, M.S. and Moon, C.J. (2022), "Atmospheric stability effects on offshore and coastal wind resource characteristics in South Korea for developing offshore wind farms", Energies, 15(4), 1305. https://doi.org/10.3390/en15041305.
  24. Ryu, G.H., Kim, D., Kim, D.Y., Kim, Y.G., Kwak, S.J., Choi, M.S. and Moon, C.J. (2022), "Analysis of vertical wind shear effects on offshore wind energy prediction accuracy applying rotor equivalent wind speed and the relationship with atmospherics stability", Appl. Sci., 12(14), 6949. https://doi.org/10.3390/app12146949.
  25. Seroka, G., Fredj, E., Kohut, J., Dunk, R., Miles, T. and Glenn S. (2018), "Sea breeze sensitivity to coastal upwelling and synoptic flow using lagrangian methods", J. Geophys. Res. Atmos., 123(17), 9443-9461. https://doi.org/10.1029/2018JD028940.
  26. Xin-Yong, S., Tao1, Q., Wen-Yan, H. and Xiao-Fan, L. (2013), "Effects of vertical wind shear on the pre-summer heavy rainfall budget: A cloud-resolving modeling study", Atmos. Ocean. Sci. Letters, 6(1), 44-51. https://doi.org/10.1080/16742834.2013.11447048.
  27. Wagner R., Antoniou I., Pedersen S.M., Courtney M.S. and Jorgensen, H.E. (2009), "The influence of the wind speed profile on wind turbine performance measurements", Wind Energy, 12(4), 348-362. https://doi.org/10.1002/we.297.
  28. Wharton S. and Lundquist J.K. (2012), "Atmospheric stability affects wind turbine power collection", Environ. Res. Letters, 7(1), 1-9. https://doi.org/10.1088/1748-9326/7/1/014005
  29. Wen, B., Sha, W., Kexiang, W., Wenxian, Y., Zhike, P. and Fulei, C. (2017), "Power fluctuation and power loss of wind turbines due to wind shear and tower shadow", Frontiers, Mech. Eng., 12(3), 321-332. https://doi.org/10.1007/s11465-017-0434-1.
  30. Yoo, J.W., Lee, S.H. and Lee, H.W. (2014), "Numerical study on the characteristics of TKE in coastal area for offshore wind power", J. Environ. Sci. Int., 23(9), 1551-1562. https://doi.org/10.5322/JESI.2014.23.9.1551.