• Title/Summary/Keyword: coastal environmental change

Search Result 416, Processing Time 0.019 seconds

Analysis of Saltwater Intrusion Effects into Coastal Aquifers in Korea considering Climate Change Effects (기후변화의 영향을 고려한 한반도 해안지역 대수층의 해수침투 영향 분석)

  • Yang, Jeong-Seok;Nam, Jae-Joon;Park, In-Bo;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.71-85
    • /
    • 2011
  • Saltwater intrusion effects of coastal aquifers in Korea peninsula were analyzed through trend analysis with groundwater level, seawater level, seawater temperature, and electrical resistivity(EC) data sets. Groundwater level and EC data sets from 27 coastal regions were collected and analyzed. Groundwater level was stable for all the regions however EC data showed stable or changing trends (9 increasing, 10 stable, and 8 decreasing regions). Seawater temperature was collected and analyzed for 14 regions and they are increasing for most regions (12 increasing and 2 stable regions). Seawater level was also collected and analyzed for 24 regions and is rising for most regions (18 rising, 3 stable, and 3 falling regions). Especially, west cost regions have stronger increasing tendencies of seawater level, seawater temperature, and EC than eastern and southern coastal regions. Therefore the saltwater intrusion problem can be serious for west cost regions in Korea peninsula and it is necessary to establish a plan to minimize the damages from saltwater intrusion.

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

Climate Change and Expansion of Squid Catches in Korea (한국에서의 기후변화와 오징어 어획의 확장)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.516-524
    • /
    • 2017
  • Objectives: The annual catch of the common squid Todarodes pacificus in Korean coastal waters has gradually increased since the late 1980s. We investigated the long-term effects of climate variability on the variation in catches of the squid in the offshore fisheries of Korea. Methods: Moving average method, correlation analysis, and regression analysis were used to determine the relationship between the environmental factors and fluctuation in the catch of the squid during the past 30 years (1981- 2010). A ten-year moving average was calculated and used for each variable. Results: Squid catches in Korean coastal waters increased over time, and there were significant variations within every ten years (p < 0.001). Air temperature, atmospheric pressure, and wind grade among the meteorological factors, alongside sea surface temperature (SST) and concentrations of phosphate phosphorous, and nitrite/nitrate nitrogen in the sea water increased and were positively related with the catch size of squid (p < 0.001). However, salinity decreased and was negatively related with the catch size (p < 0.001). The increase in air temperature and SST was almost parallel, although there was a time lag between the two factors. Conclusion: These results suggest that there is a causal association between climate change and squid populations. Climate change, especially ocean warming, appears to have been largely favorable for squid range expansion into Korean seas. Although the expansion may be helpful for the human food supply, the safety of the squid caught should be monitored since the concentrations of phosphorous and nitrogen in the sea water increased, which indicates that Korean seas have grown gradually more polluted.

Change in Stream Morphology after Gongneung Weir 2 Removal (공릉2보 철거에 따른 하천형태학적 변화)

  • Choi, Sung-Uk;Lee, Hea-Eun;Yoon, Byung-Man;Woo, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.425-432
    • /
    • 2009
  • Gongneung Weir 2 was built in 1970s to supply water for irrigation. For a long time, the weir was left uncared because of the land use change of the nearby area. The weir is 1.5 m high, and the stream in which the weir was installed has bed materials of fine sands to fine gravels. In 2006, the local government and residents agreed on uninstalling the weir, and the weir was removed completely on April 14. This paper reports the results of three field investigations for the study of the stream morphology change after the weir removal. Changes in grain size distribution, bed elevation, and cross section before and after the weir removal are provided and discussed. Net amount of sediment deposits within 1 km reach of the stream is estimated, and the results illustrates that the sediment process, leading to an equilibrium of the bed, progressed very swiftly, namely within 45 days.

Time-dependent Performance-based Design of Caisson Breakwater Considering Climate Change Impacts (기후변화 효과를 고려한 케이슨 방파제의 시간 의존 성능설계)

  • Suh, Kyung-Duck;Kim, Seung-Woo;Mori, Nobuhito;Mase, Hajime
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.215-225
    • /
    • 2011
  • During the past decade, the performance-based design method of caisson breakwaters has been developed, which allows a certain damage while maintaining the function of the structure. However, the existing method does not consider the changing coastal environment due to climate change impacts so that the stability of the structure is not guaranteed over the lifetime of the structure. In this paper, a time-dependent performance-based design method is developed, which is able to estimate the expected sliding distance and the probability of failure of a caisson breakwater considering the influence of sea level rise and wave height increase due to climate change. Especially, time-dependent probability of failure is calculated by considering the sea level rise and wave height increase as a function of time. The developed method was applied to the East Breakwater of the Hitachinaka Port which is located on the east coast of Japan. It was shown that the influence of wave height increase is much greater than that of sea level rise, because the magnitude of sea level rise is negligibly small compared with the water depth at the breakwater site. Moreover, investigation was made for the change of caisson width due to climate change impacts, which is the main concern of harbor engineers. The longer the structure lifetime, the greater was the increase of caisson width. The required increase of caisson width of the Hitachinaka breakwater whose width is 22 m at present was about 0.5 m and 1.5 m respectively for parabolic and linear wave height increase due to climate change.

A study of aerodynamic pressures on elevated houses

  • Abdelfatah, Nourhan;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.335-350
    • /
    • 2020
  • In coastal residential communities, especially along the coastline, flooding is a frequent natural hazard that impacts the area. To reduce the adverse effects of flooding, it is recommended to elevate coastal buildings to a certain safe level. However, post storm damage assessment has revealed severe damages sustained by elevated buildings' components such as roofs, walls, and floors. By elevating a structure and creating air gap underneath the floor, the wind velocity increases and the aerodynamics change. This results in varying wind loading and pressure distribution that are different from their slab on grade counterparts. To fill the current knowledge gap, a large-scale aerodynamic wind testing was conducted at the Wall of Wind experimental facility to evaluate the wind pressure distribution over the surfaces of a low-rise gable roof single-story elevated house. The study considered three different stilt heights. This paper presents the observed changes in local and area averaged peak pressure coefficients for the building surfaces of the studied cases. The aerodynamics of the elevated structures are explained. Comparisons are done with ASCE 7-16 and AS/NZS 1170.2 wind loading standards. For the floor surface, the study suggests a wind pressure zoning and pressure coefficients for each stilt height.

A New Statistical Approach for the Estimation of Range and Degree of Fisheries Damages Caused by Public Undertaking (공공사업으로 인한 어업피해 범위와 피해정도 추정의 새로운 통계학적 접근)

  • 강용주;김기수;장창익;박청길;이종섭
    • The Journal of Fisheries Business Administration
    • /
    • v.35 no.1
    • /
    • pp.117-132
    • /
    • 2004
  • This study attempts to suggest a new approach of the estimation of range and degree of fisheries damages caused by a large scale of reclamation undertaken in coastal area using the central limit theorem(CLT) in statistics. The key result of the study is the introduction of the new concept of critical variation of environmental factor($d_{c}$). The study defines $d_{c}$ as a standard deviation of the sample mean($\bar{X}$) of environmental factor(X), in other words, $\frac{\sigma}{ \sqrt{n}}$. The inner bound of $d_{c}$ could be the area of fisheries damages caused by public coastal undertaking. The study also defines the decreasing rate of fisheries production$\delta_{\varepsilon}$, in other words, degree of fisheries damages, as the rate of change in the distribution of sample mean(($\bar{X}$), caused by the continuous and constant variation of environmental factor. Therefore $\delta_{\varepsilon}$ can be easily calculated by the use of table of the standardized normal distribution.

  • PDF

Change of Mean Sea Level due to Coastal Development and Climate Change in the Western Coast of Korean Peninsula (해안개발과 기후변화로 인한 서해 연안해역의 평균해수면 변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.120-130
    • /
    • 2014
  • Change of mean sea level in the western coast of Korean peninsula was estimated with the observed tide data of the KHOA. The cause of the change was investigated. Mean sea levels in the western coast have been changed due to coastal development projects in the coastal zone. The estimated variations, which are significantly different regionally, vary from -6.8 cm in Incheon to 38 cm in Gunsan. The changing rate of mean sea level occurred by natural factors such as global warming varies from 1.1 mm/year in the north to 4.4 mm/year in the south of western coast of Korean peninsula. In Jeju, sea level rise and rise of sea temperature showed a close relationship. Water temperature rise of one degree increases mean sea level to 0.6 mm in Jeju. Rising rate of mean sea level has increased rapidly after the mid-1980s.

Reviews on the Adaptation Strategy to Climate Change -Application to the Sea Level Rise- (기후변화 적응방안 연구 -해수면 상승을 중심으로-)

  • Cho Kwangwoo;Maeng Jun-Ho;Kim Hae-Dong;Oh Young Min;Kim Dong-Sun;Kim Mu Chan;Yoon Jong Hwui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.81-88
    • /
    • 2004
  • We review the adaptation strategies of the 21st climate change in an application to sea level rise. For the development of appropriate adaptation strategies on the coast vulnerable to the sea level rise, we have to consider the issues such as where to adapt, how to adapt, and when to adapt. The coastal target needed adaptation can be found by the evaluation of adaptive capacity of the coastal zone which requires the understanding of impacts and adaptive potential of the natural and socioeconomic systems in the coastal zone. Planned adaptation options to sea level rise can be classified into three generic approaches as managed retreat, accommodation, and protection In practice, the implementation of the options requires the analysis of land use, degree of vulnerability, cost and benefit, etc, and may be combination of the options rather than one approach. In terms of the response timing, the adaptation can be grouped as anticipatory and reactive ones. Generally it is more effective to consider both anticipatory and reactive adaptations at the same time for the impacts of future sea level rise. Due to the scientific uncertainty of climate change issues including sea level rise, the adaptation processes have to be designed to deal with a series of processes such as information md awareness establishment, planning and design implementation, and monitoring and evaluation in continuity and long-term period.

  • PDF

Coastal Remote Sensing in Korea (한국의 연안원격탐사 활용)

  • Ryu, Joo-Hyung;Hong, Sang-Hoon;Jo, Young-Heon;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.231-236
    • /
    • 2020
  • Recently, great attention for environment changes of coastal regions due to climate change by the global warming has been raised. In addition, coastal environments which are very useful resources has been impacted by anthropogenic activities such as urbanization or fishery, etc. In situ measurements and remote sensing application using various platforms equipped by payloads with very diverse spectral resolution has been conducted to protect and reconstruct invaluable coastal region. In this special issue, several studies showing very interesting results of the coastal remote sensing in Korea. This special issue contains the research activities over the coastal regions in Korea has been performed by the KIOST Korea Ocean Satellite Center and academic organizations. We hope to share useful information on the various domestic coastal remote exploration activities and to contribute to develop scientific research to protect our invaluable coastal environment.